Skip to main content
Log in

Beneficial effects of a red wine polyphenol extract on high-fat diet-induced metabolic syndrome in rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Individuals with metabolic syndrome (MS) show several metabolic abnormalities including insulin resistance, dyslipidaemia, and oxidative stress (OS). Diet is one of the factors influencing the development of MS, and current nutritional advice emphasises the benefits of fruit and vegetable consumption. Here, we assessed the effects of naturally occurring antioxidants, red wine polyphenols (RWPs), on MS and OS.

Methods

Wistar rats (n = 20) weighing 200–220 g received a high-fat diet (HFD) for 2 months before they were divided into two groups that received either HFD only or HFD plus 50 mg/kg RWPs in their drinking water for an additional 2 months. A control group (n = 10) received a normal diet (ND) for 4 months.

Results

Rats receiving HFD increased body weight over 20 % throughout the duration of the study. They also showed increased blood levels of C-peptide, glucose, lipid peroxides, and oxidised proteins. In addition, the HFD increased OS in hepatic, pancreatic, and vascular tissues, as well as induced pancreatic islet cell hyperplasia and hepatic steatosis. Addition of RWPs to the HFD attenuated these effects on plasma and tissue OS and on islet cell hyperplasia. However, RWPs had no effect on blood glucose levels or hepatic steatosis.

Conclusions

RWPs showed an antioxidant mechanism of action against MS. This result will inform future animal studies exploring the metabolic effects of RWPs in more detail. In addition, these findings support the use of antioxidants as adjunctive nutritional treatments for patients with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization (1999) Definition, diagnosis and classification of diabetes mellitus and its complications. WHO/NCD/NCS/99.2

  2. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation and treatment of high blood cholesterol in adults (Adults Treatment panel III). JAMA 285:2486–2497

    Article  Google Scholar 

  3. Dunstan DW, Zimmet PZ, Welborn TA, De Courten MP, Cameron AJ, Sicree RA, Dwyer T, Colagiuri S, Jolley D, Knuiman M, Atkins R, Shaw JE (2002) The rising prevalence of diabetes and impaired glucose tolerance: the Australian Diabetes, Obesity and Lifestyle Study. Diabetes Care 25:829–834

    Article  Google Scholar 

  4. Isomaa B, Almgren P, Tuomi T, Forsén B, Lahti K, Nissén M, Taskinen MR, Groop L (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24:683–689

    Article  CAS  Google Scholar 

  5. Liebman M, Pelican S, Moore SA, Holmes B, Wardlaw MK, Melcher LM, Liddil AC, Paul LC, Dunnagan T, Haynes GW (2003) Dietary intake, eating behavior, and physical activity-related determinants of high body mass index in rural communities in Wyoming, Montana, and Idaho. Int J Obes Relat Metab Disord 27:684–692

    Article  CAS  Google Scholar 

  6. Wild SH, Byrne CD (2006) ABC of obesity. Risk factors for diabetes and coronary heart disease. BMJ 333:1009–1011

    Article  Google Scholar 

  7. Araujo FB, Barbosa DS, Hsin CY, Maranhão RC, Abdalla DS (1995) Evaluation of oxidative stress in patients with hyperlipidemia. Atherosclerosis 117:61–71

    Article  CAS  Google Scholar 

  8. Kyselová P, Zourek M, Rusavý Z, Trefil L, Racek J (2002) Hyperinsulinemia and oxidative stress. Physiol Res 51:591–595

    Google Scholar 

  9. Yang RL, Shi YH, Hao G, Li W, Le GW (2008) Increasing oxidative stress with progressive hyperlipidemia in human: relation between malondialdehyde and atherogenic index. J Clin Biochem Nutr 43:154–158

    Article  Google Scholar 

  10. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S–38S

    Article  CAS  Google Scholar 

  11. Krieger-Brauer HI, Kather H (1992) Human fat cells possess a plasma membrane-bound H2O2-generating system that is activated by insulin via a mechanism bypassing the receptor kinase. J Clin Invest 89:1006–1013

    Article  CAS  Google Scholar 

  12. Kashiwagi A, Shinozaki K, Nishio Y, Maegawa H, Maeno Y, Kanazawa A, Kojima H, Haneda M, Hidaka H, Yasuda H, Kikkawa R (1999) Endothelium-specific activation of NAD(P)H oxidase in aortas of exogenously hyperinsulinemic rats. Am J Physiol 277:E976–E983

    CAS  Google Scholar 

  13. Xu L, Badr MZ (1999) Enhanced potential for oxidative stress in hyperinsulinemic rats: imbalance between hepatic peroxisomal hydrogen peroxide production and decomposition due to hyperinsulinemia. Horm Metab Res 31:278–282

    Article  CAS  Google Scholar 

  14. Montani JP, Carroll JF, Dwyer TM, Antic V, Yang Z, Dulloo AG (2004) Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes Relat Metab Disord 28(Suppl 4):S58–S65

    Article  CAS  Google Scholar 

  15. Guichard C, Moreau R, Pessayre D, Epperson TK, Krause KH (2008) NOX family NADPH oxidases in liver and in pancreatic islets: a role in the metabolic syndrome and diabetes? Biochem Soc Trans 36:920–929

    Article  CAS  Google Scholar 

  16. Creager MA, Lüscher TF, Cosentino F, Beckman JA (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation 108:1527–1532

    Article  Google Scholar 

  17. Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ, Shulman GI (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279:32345–32353

    Article  CAS  Google Scholar 

  18. Visser ME, Lammers NM, Nederveen AJ, van der Graaf M, Heerschap A, Ackermans MT, Sauerwein HP, Stroes ES, Serlie MJ (2011) Hepatic steatosis does not cause insulin resistance in people with familial hypobetalipoproteinaemia. Diabetologia 54:2113–2121

    Article  CAS  Google Scholar 

  19. Hamaguchi M, Kojima T, Takeda N, Nakagawa T, Taniguchi H, Fujii K, Omatsu T, Nakajima T, Sarui H, Shimazaki M, Kato T, Okuda J, Ida K (2005) The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med 143:722–728

    Article  CAS  Google Scholar 

  20. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93:137–188

    Article  CAS  Google Scholar 

  21. Escribano O, Guillén C, Nevado C, Gómez-Hernández A, Kahn CR, Benito M (2009) Beta-cell hyperplasia induced by hepatic insulin resistance: role of a liver-pancreas endocrine axis through insulin receptor A isoform. Diabetes 58:820–828

    Article  CAS  Google Scholar 

  22. Schini-Kerth VB, Etienne-Selloum N, Chataigneau T, Auger C (2011) Vascular protection by natural product-derived polyphenols: in vitro and in vivo evidence. Planta Med 77:1161–1167

    Article  CAS  Google Scholar 

  23. Sarr M, Chataigneau M, Martins S, Schott C, El Bedoui J, Oak MH, Muller B, Chataigneau T, Schini-Kerth VB (2006) Red wine polyphenols prevent angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase. Cardiovasc Res 71:794–802

    Article  CAS  Google Scholar 

  24. Dal-Ros S, Bronner C, Auger C, Schini-Kerth VB (2012) Red wine polyphenols improve an established aging-related endothelial dysfunction in the mesenteric artery of middle-aged rats: role of oxidative stress. Biochem Biophys Res Commun 419:381–387

    Article  CAS  Google Scholar 

  25. Dal-Ros S, Zoll J, Lang AL, Auger C, Keller N, Bronner C, Geny B, Schini-Kerth VB (2011) Chronic intake of red wine polyphenols by young rats prevents aging-induced endothelial dysfunction and decline in physical performance: role of NADPH oxidase. Biochem Biophys Res Commun 404:743–749

    Article  CAS  Google Scholar 

  26. Charles AL, Meyer A, Dal-Ros S, Auger C, Keller N, Ramamoorthy TG, Zoll J, Metzger D, Schini-Kerth V, Geny B (2013) Polyphenols prevent ageing-related impairment in skeletal muscle mitochondrial function through decreased reactive oxygen species production. Exp Physiol 98:536–545

    Article  CAS  Google Scholar 

  27. Agouni A, Lagrue-Lak-Hal AH, Mostefai HA, Tesse A, Mulder P, Rouet P, Desmoulin F, Heymes C, Martínez MC, Andriantsitohaina R (2009) Red wine polyphenols prevent metabolic and cardiovascular alterations associated with obesity in Zucker fatty rats (Fa/Fa). PLoS One 4:e5557

    Article  Google Scholar 

  28. Auberval N, Dal S, Bietiger W, Pinget M, Jeandidier N, Maillard-Pedracini E, Schini-Kerth V, Sigrist S (2014) Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet. Diabetol Metab Syndr 6:130

    Article  Google Scholar 

  29. Auberval N, Dal S, Bietiger W, Seyfritz E, Peluso J, Muller C, Zhao M, Marchioni E, Pinget M, Jeandidier N, Maillard E, Schini-Kerth V, Sigrist S (2015) Oxidative stress type influences the properties of antioxidants containing polyphenols in RINm5F beta cells. Evid Based Complement Altern Med 2015:859048

    Article  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  31. Gustavsson C, Yassin K, Wahlström E, Cheung L, Lindberg J, Brismar K, Ostenson CG, Norstedt G, Tollet-Egnell P (2010) Sex-different hepaticglycogen content and glucose output in rats. BMC Biochem 11:38

    Article  Google Scholar 

  32. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ, Nonalcoholic Steatohepatitis Clinical Research Network (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  Google Scholar 

  33. Erejuwa OO (2012) Management of diabetes mellitus: could simultaneous targeting of hyperglycemia and oxidative stress be a better panacea? Int J Mol Sci 13:2965–2972

    Article  CAS  Google Scholar 

  34. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22(3):659–661

    Article  CAS  Google Scholar 

  35. Feillet-Coudray C, Sutra T, Fouret G, Ramos J, Wrutniak-Cabello C, Cabello G, Cristol JP, Coudray C (2009) Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: involvement of mitochondrial and NAD(P)H oxidase systems. Free Radic Biol Med 46:624–632

    Article  CAS  Google Scholar 

  36. Lee SJ, Choi SK, Seo JS (2009) Grape skin improves antioxidant capacity in rats fed a high fat diet. Nutr Res Pract 3:279–285

    Article  CAS  Google Scholar 

  37. Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K (2010) Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 11:1365–1402

    Article  CAS  Google Scholar 

  38. Li JM, Wang W, Fan CY, Wang MX, Zhang X, Hu QH, Kong LD (2013) Quercetin preserves β-cell mass and function in fructose-induced hyperinsulinemia through modulating pancreatic Akt/FoxO1 activation. Evid Based Complement Altern Med 2013:303902

    Google Scholar 

  39. Aoun M, Michel F, Fouret G, Casas F, Jullien M, Wrutniak-Cabello C, Ramos J, Cristol JP, Coudray C, Carbonneau MA, Feillet-Coudray C (2010) A polyphenol extract modifies quantity but not quality of liver fatty acid content in high-fat-high-sucrose diet-fed rats: possible implication of the sirtuin pathway. Br J Nutr 104:1760–1770

    Article  CAS  Google Scholar 

  40. Bahadoran Z, Mirmiran P, Azizi F (2013) Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 12:43

    Article  Google Scholar 

  41. Muller CJ, Fugelsang KC (1997) Red wine but not white: the importance of fully characterizing wines used in health studies. Am J Clin Nutr 66:447–451

    CAS  Google Scholar 

  42. Menaa F, Badole S, Menaa B, Menaa A, Badhankar SL (2012) Polyphenols, promising therapeutics for inflammatory diseases? In: Watson RR, Preedy V (eds) Bioactive food as dietary interventions for arthritis and related inflammatory diseases, bioactive food in chronic disease states, 1st edn. Academic Press, Cambridge, pp 421–428

    Google Scholar 

  43. Ueda M, Hayashibara K, Ashida H (2013) Propolis extract promotes translocation of glucose transporter 4 and glucose uptake through both PI3 K- and AMPK-dependent pathways in skeletal muscle. BioFactors 39:457–466

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the foundation “Vaincre le Diabète” and ASDIA (Assistance Service Diabète) for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Séverine Sigrist.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auberval, N., Dal, S., Maillard, E. et al. Beneficial effects of a red wine polyphenol extract on high-fat diet-induced metabolic syndrome in rats. Eur J Nutr 56, 1467–1475 (2017). https://doi.org/10.1007/s00394-016-1192-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1192-2

Keywords

Navigation