Skip to main content
Log in

NMR-based metabolomics highlights differences in plasma metabolites in pigs exhibiting diet-induced differences in adiposity

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

A better understanding of the control of body fat mass and distribution is required for both human health and animal production. The current study investigates plasma parameters in response to changes in body fat mass.

Methods

Pigs from two lines divergently selected for residual feed intake were fed diets contrasted in energy sources and nutrients. Between 74 and 132 days of age, pigs (n = 12 by diet and by line) received isoproteic and isoenergetic diets, either rich in starch (LF) or in lipids and fibres (HF). At the end of the feeding trial, plasma samples were analysed by 1H NMR spectroscopy and standard hormonal and biochemical assays.

Results

Pigs fed the HF diet had lower (P < 0.01) perirenal and subcutaneous adipose tissue relative masses than pigs fed the LF diet. Metabolomic approach showed a clear discrimination between diets, with lower (P < 0.05) plasma levels of creatinine–lysine, creatine, tyrosine, proline, histidine, lysine, phenylalanine and formate but higher (P < 0.001) plasma VLDL-LDL levels in HF pigs than in LF pigs. Plasma concentrations of triglycerides were higher (P < 0.001), while plasma concentrations of β-hydroxybutyrate, leptin, glucose, insulin and urea were lower (P ≤ 0.05) in HF pigs than in LF pigs. Plasma levels of leptin, creatine and urea were positively correlated (r = 0.3, P < 0.05) with relative adipose tissue masses.

Conclusion

These data indicate that metabolites associated with energy and protein metabolism were involved in the response to a high-fat, high-fibre diet. Relevant plasma indicators of metabolic flexibility related to changes in body adiposity were then proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM, Bahalim AN, McIntire RK, Gutierrez HR, Cowan M, Paciorek CJ, Farzadfar F, Riley L, Ezzati M (2012) National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metr 10:22. doi:10.1186/1478-7954-10-22

    Article  Google Scholar 

  2. Sillence MN (2004) Technologies for the control of fat and lean deposition in livestock. Vet J 167:242–257. doi:10.1016/j.tvjl.2003.10.020

    Article  CAS  Google Scholar 

  3. Konieczna J, Sanchez J, van Schothorst EM, Torrens JM, Bunschoten A, Palou M, Pico C, Keijer J, Palou A (2014) Identification of early transcriptome-based biomarkers related to lipid metabolism in peripheral blood mononuclear cells of rats nutritionally programmed for improved metabolic health. Genes Nutr 9:366. doi:10.1007/s12263-013-0366-2

    Article  CAS  Google Scholar 

  4. Yamaoka M, Maeda N, Nakamura S, Kashine S, Nakagawa Y, Hiuge-Shimizu A, Okita K, Imagawa A, Matsuzawa Y, Matsubara K, Funahashi T, Shimomura I (2012) A pilot investigation of visceral fat adiposity and gene expression profile in peripheral blood cells. PLoS ONE 7:e47377. doi:10.1371/journal.pone.0047377

    Article  CAS  Google Scholar 

  5. te Pas MF, Koopmans SJ, Kruijt L, Calus MP, Smits MA (2013) Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model. PLoS ONE 8:e73087. doi:10.1371/journal.pone.0073087

    Article  Google Scholar 

  6. Gibney MJ, Walsh M, Brennan L, Roche HM, German B, van Ommen B (2005) Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr 82:497–503

    CAS  Google Scholar 

  7. Xiao H, Wu MM, Shao FY, Tan BE, Li TJ, Ren WK, Yin J, Wang J, He QH, Yin YL, Hou YQ (2015) Metabolic profiles in the response to supplementation with composite antimicrobial peptides in piglets challenged with deoxynivalenol. J Anim Sci 93:1114–1123

    Article  CAS  Google Scholar 

  8. Szymanska E, Bouwman J, Strassburg K, Vervoort J, Kangas AJ, Soininen P, Ala-Korpela M, Westerhuis J, van Duynhoven JP, Mela DJ, Macdonald IA, Vreeken RJ, Smilde AK, Jacobs DM (2012) Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: towards metabolomics diagnostics. OMICS J Integr Biol 16:652–667. doi:10.1089/omi.2012.0062

    Article  CAS  Google Scholar 

  9. Martin FP, Montoliu I, Collino S, Scherer M, Guy P, Tavazzi I, Thorimbert A, Moco S, Rothney MP, Ergun DL, Beaumont M, Ginty F, Qanadli SD, Favre L, Giusti V, Rezzi S (2013) Topographical body fat distribution links to amino acid and lipid metabolism in healthy obese women. PLoS ONE 8:e73445. doi:10.1371/journal.pone.0073445

    Article  CAS  Google Scholar 

  10. Carninci P (2014) Genomics: mice in the ENCODE spotlight. Nature 515:346–347. doi:10.1038/515346a

    Article  CAS  Google Scholar 

  11. Dodson MV, Hausman GJ, Guan L, Du M, Rasmussen TP, Poulos SP, Mir P, Bergen WG, Fernyhough ME, McFarland DC, Rhoads RP, Soret B, Reecy JM, Velleman SG, Jiang Z (2010) Lipid metabolism, adipocyte depot physiology and utilization of meat animals as experimental models for metabolic research. Int J Biol Sci 6:691–699

    Article  CAS  Google Scholar 

  12. Spurlock ME, Gabler NK (2008) The development of porcine models of obesity and the metabolic syndrome. J Nutr 138:397–402

    CAS  Google Scholar 

  13. Litten-Brown JC, Corson AM, Clarke L (2010) Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal 4:899–920. doi:10.1017/S1751731110000200

    Article  CAS  Google Scholar 

  14. Nielsen KL, Hartvigsen ML, Hedemann MS, Laerke HN, Hermansen K, Bach Knudsen KE (2014) Similar metabolic responses in pigs and humans to breads with different contents and compositions of dietary fibers: a metabolomics study. Am J Clin Nutr 99:941–949

    Article  CAS  Google Scholar 

  15. Gondret F, Louveau I, Mourot J, Duclos MJ, Lagarrigue S, Gilbert H, van Milgen J (2014) Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency. J Anim Sci 92:4865–4877. doi:10.2527/jas.2014-7995

    Article  CAS  Google Scholar 

  16. Gilbert H, Bidanel JP, Gruand J, Caritez JC, Billon Y, Guillouet P, Lagant H, Noblet J, Sellier P (2007) Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits. J Anim Sci 85:3182–3188. doi:10.2527/jas.2006-590

    Article  CAS  Google Scholar 

  17. Balayssac S, Déjean S, Lalande J, Gilard V, Malet-Martino M (2013) A toolbox to explore NMR metabolomic data sets using the R environment. Chemometr Intell Lab Syst 126:50–59. doi:10.1016/j.chemolab.2013.04.015

    Article  CAS  Google Scholar 

  18. Barker M, Rayens W (2003) Partial least squares for discrimination. J Chemom 17:166–173. doi:10.1002/cem.785

    Article  CAS  Google Scholar 

  19. Anderssen E, Dyrstad K, Westad F, Martens H (2006) Reducing over-optimism in variable selection by cross-model validation. Chemometr Intell Lab Syst 84:69–74. doi:10.1016/j.chemolab.2006.04.021

    Article  CAS  Google Scholar 

  20. Eriksson L, Trygg J, Wold S (2008) CV-ANOVA for significance testing of PLS and OPLS® models. J Chemom 22:594–600. doi:10.1002/cem.1187

    Article  CAS  Google Scholar 

  21. Qian H, Barb CR, Compton MM, Hausman GJ, Azain MJ, Kraeling RR, Baile CA (1999) Leptin mRNA expression and serum leptin concentrations as influenced by age, weight, and estradiol in pigs. Domest Anim Endocrinol 16:135–143

    Article  CAS  Google Scholar 

  22. Salfen BE, Carroll JA, Keisler DH (2003) Endocrine responses to short-term feed deprivation in weanling pigs. J Endocrinol 178:541–551

    Article  CAS  Google Scholar 

  23. Louveau I, Bonneau M (1996) Effect of a growth hormone infusion on plasma insulin-like growth factor-I in Meishan and large white pigs. Reprod Nutr Dev 36:301–310

    Article  CAS  Google Scholar 

  24. R Development Core Team (2008) R: a language and environment for statistical computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  25. Le Naou T, Le Floc’h N, Louveau I, Gilbert H, Gondret F (2012) Metabolic changes and tissue responses to selection on residual feed intake in growing pigs. J Anim Sci 90:4771–4780. doi:10.2527/jas.2012-5226

    Article  Google Scholar 

  26. Sejersen H, Sorensen MT, Larsen T, Bendixen E, Ingvartsen KL (2013) Liver protein expression in young pigs in response to a high-fat diet and diet restriction. J Anim Sci 91:147–158. doi:10.2527/jas.2012-5303

    Article  CAS  Google Scholar 

  27. Yan H, Potu R, Lu H, Vezzoni de Almeida V, Stewart T, Ragland D, Armstrong A, Adeola O, Nakatsu CH, Ajuwon KM (2013) Dietary fat content and fiber type modulate hind gut microbial community and metabolic markers in the pig. PLoS ONE 8:e59581. doi:10.1371/journal.pone.0059581

    Article  CAS  Google Scholar 

  28. Polakof S, Diaz-Rubio ME, Dardevet D, Martin JF, Pujos-Guillot E, Scalbert A, Sebedio JL, Mazur A, Comte B (2013) Resistant starch intake partly restores metabolic and inflammatory alterations in the liver of high-fat-diet-fed rats. J Nutr Biochem 24:1920–1930. doi:10.1016/j.jnutbio.2013.05.008

    Article  CAS  Google Scholar 

  29. Ziemer CJ, Kerr BJ, Weber TE, Arcidiacono S, Morrison M, Ragauskas A (2012) Effects of feeding fiber-fermenting bacteria to pigs on nutrient digestion, fecal output, and plasma energy metabolites. J Anim Sci 90:4020–4027. doi:10.2527/jas.2012-5193

    Article  CAS  Google Scholar 

  30. Leclere C, Lairon D, Champ M, Cherbut C (1993) Influence of particle size and sources of non-starch polysaccharides on postprandial glycaemia, insulinaemia and triacylglycerolaemia in pigs and starch digestion in vitro. Br J Nutr 70:179–188

    Article  CAS  Google Scholar 

  31. Isken F, Klaus S, Osterhoff M, Pfeiffer AF, Weickert MO (2010) Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice. J Nutr Biochem 21:278–284. doi:10.1016/j.jnutbio.2008.12.012

    Article  CAS  Google Scholar 

  32. Brosnan JT, Wijekoon EP, Warford-Woolgar L, Trottier NL, Brosnan ME, Brunton JA, Bertolo RF (2009) Creatine synthesis is a major metabolic process in neonatal piglets and has important implications for amino acid metabolism and methyl balance. J Nutr 139:1292–1297. doi:10.3945/jn.109.105411

    Article  CAS  Google Scholar 

  33. Yde CC, Westerhuis JA, Bertram HC, Bach Knudsen KE (2012) Application of NMR-based metabonomics suggests a relationship between betaine absorption and elevated creatine plasma concentrations in catheterised sows. Br J Nutr 107:1603–1615. doi:10.1017/s0007114511004909

    Article  CAS  Google Scholar 

  34. Ellis PR, Roberts FG, Low AG, Morgan LM (1995) The effect of high-molecular-weight guar gum on net apparent glucose absorption and net apparent insulin and gastric inhibitory polypeptide production in the growing pig: relationship to rheological changes in jejunal digesta. Br J Nutr 74:539–556

    Article  CAS  Google Scholar 

  35. Isaksson H, Landberg R, Sundberg B, Lundin E, Hallmans G, Zhang JX, Tidehag P, Knudsen KEB, Moazzami AA, Aman P (2013) High-fiber rye diet increases ileal excretion of energy and macronutrients compared with low-fiber wheat diet independent of meal frequency in ileostomy subjects. Food Nutr Res. doi:10.3402/fnr.v57i0.18519

    Google Scholar 

  36. Montagne L, Loisel F, Le Naou T, Gondret F, Gilbert H, Le Gall M (2014) Difference in short-term responses to a high-fiber diet in pigs divergently selected for residual feed intake. J Anim Sci 92:1512–1523. doi:10.2527/jas.2013-6623

    Article  CAS  Google Scholar 

  37. Berschauer F, Close WH, Stephens DB (1983) The influence of protein:energy value of the ration and level of feed intake on the energy and nitrogen metabolism of the growing pig. 2. N metabolism at two environmental temperatures. Br J Nutr 49:271–283

    Article  CAS  Google Scholar 

  38. Xu QY, Liu YH, Zhang Q, Ma B, Yang ZD, Liu L, Yao D, Cui GB, Sun JJ, Wu ZM (2014) Metabolomic analysis of simvastatin and fenofibrate intervention in high-lipid diet-induced hyperlipidemia rats. Acta Pharmacol Sin 35:1265–1273. doi:10.1038/aps.2014.72

    Article  CAS  Google Scholar 

  39. Zhang Q, Wang G, Ma B, Dua Y, Zhu L, Wu D (2010) Metabonomic profiling of diet-induced hyperlipidaemia in a rat model. Biomarkers 15:205–216. doi:10.3109/13547500903419049

    Article  CAS  Google Scholar 

  40. Lerner AB (1953) Metabolism of phenylalanine and tyrosine. Adv Enzymol Relat Subj Biochem 14:73–128

    CAS  Google Scholar 

  41. Yde CC, Bertram HC, Theil PK, Knudsen KE (2011) Effects of high dietary fibre diets formulated from by-products from vegetable and agricultural industries on plasma metabolites in gestating sows. Arch Anim Nutr 65:460–476

    Article  CAS  Google Scholar 

  42. Kloareg M, Noblet J, Van Milgen J (2006) Estimation of whole body lipid mass in finishing pigs. Anim Sci 82:241–251. doi:10.1079/ASC200529

    Article  Google Scholar 

  43. Barb CR (1999) The brain-pituitary-adipocyte axis: role of leptin in modulating neuroendocrine function. J Anim Sci 77:1249–1257

    CAS  Google Scholar 

  44. Suzuki K, Inomata K, Katoh K, Kadowaki H, Shibata T (2009) Genetic correlations among carcass cross-sectional fat area ratios, production traits, intramuscular fat, and serum leptin concentration in Duroc pigs. J Anim Sci 87:2209–2215. doi:10.2527/jas.2008-0866

    Article  CAS  Google Scholar 

  45. Fabian J, Chiba LI, Kuhlers DL, Frobish LT, Nadarajah K, McElhenney WH (2003) Growth performance, dry matter and nitrogen digestibilities, serum profile, and carcass and meat quality of pigs with distinct genotypes. J Anim Sci 81:1142–1149

    CAS  Google Scholar 

  46. Steyn FJ, Xie TY, Huang L, Ngo ST, Veldhuis JD, Waters MJ, Chen C (2013) Increased adiposity and insulin correlates with the progressive suppression of pulsatile GH secretion during weight gain. J Endocrinol 218:233–244. doi:10.1530/joe-13-0084

    Article  CAS  Google Scholar 

  47. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161

    Article  CAS  Google Scholar 

  48. Hoenig MR, Cowin G, Buckley R, McHenery C, Coulthard A (2011) Low density lipoprotein cholesterol is inversely correlated with abdominal visceral fat area: a magnetic resonance imaging study. Lipids Health Dis 10:12. doi:10.1186/1476-511x-10-12

    Article  CAS  Google Scholar 

  49. Rohart F, Paris A, Laurent B, Canlet C, Molina J, Mercat MJ, Tribout T, Muller N, Iannuccelli N, Villa-Vialaneix N, Liaubet L, Milan D, San Cristobal M (2012) Phenotypic prediction based on metabolomic data for growing pigs from three main European breeds. J Anim Sci 90:4729–4740. doi:10.2527/jas.2012-5338

    Article  CAS  Google Scholar 

  50. He Q, Ren P, Kong X, Wu Y, Wu G, Li P, Hao F, Tang H, Blachier F, Yin Y (2012) Comparison of serum metabolite compositions between obese and lean growing pigs using an NMR-based metabonomic approach. J Nutr Biochem 23:133–139. doi:10.1016/j.jnutbio.2010.11.007

    Article  CAS  Google Scholar 

  51. Coma J, Zimmerman DR, Carrion D (1995) Relationship of rate of lean tissue growth and other factors to concentration of urea in plasma of pigs. J Anim Sci 73:3649–3656

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank H. Gilbert (INRA, UMR1388 GenPhySE F-31326 Castanet Tolosan), and Y. Billon and A. Priet (INRA, UE1372 GenESI, Le Magneraud, F-17700 Surgères) for line selection, P. Roger and J. Delamarre (INRA, UMR Pegase) for animal care, G. Guillemois (INRA, UMR Pegase) for diet preparation, and J. Liger and J.F. Rouault (INRA, UMR Pegase) for animal slaughter procedures. They are also grateful to C. Tréfeu and S. Daré (INRA, UMR Pegase) for their help in sample collection and/or expert technical assistance. The current study was financially supported by the French National Research Agency (ANR-11-BSV7-004 FatInteger). M. Jégou was supported by a Ph.D. scholarship from INRA and the research fund of Région Bretagne (France).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Louveau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jégou, M., Gondret, F., Lalande-Martin, J. et al. NMR-based metabolomics highlights differences in plasma metabolites in pigs exhibiting diet-induced differences in adiposity. Eur J Nutr 55, 1189–1199 (2016). https://doi.org/10.1007/s00394-015-0932-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0932-z

Keywords

Navigation