Skip to main content

Advertisement

Log in

Urolithin A causes p21 up-regulation in prostate cancer cells

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Walnuts contain several bioactive compounds, including pedunculagin, a polyphenol metabolized by microbiota to form urolithins, namely urolithin A (UA). The aim of this study was to determine gene expression changes in prostate cancer cells after incubation with UA.

Methods

We performed a genomic analysis to study the effect of UA on LNCaP prostate cells. Cells were incubated with 40 µM UA for 24 h, and RNA was extracted and hybridized to Affymetrix Human Genome U219 array. Microarray results were analyzed using GeneSpring v13 software. Differentially expressed genes (p < 0.05, fold change > 2) were used to perform biological association networks. Cell cycle was analyzed by flow cytometry and apoptosis measured by the rhodamine method and by caspases 3 and 7 activation. Cell viability was determined by MTT assay.

Results

We identified two nodes, FN-1 and CDKN1A, among the differentially expressed genes upon UA treatment. CDKN1A was validated, its mRNA and protein levels were significantly up-regulated, and the promoter activation measured by luciferase. Cell cycle analysis showed an increase in G1-phase, and we also observed an induction of apoptosis and caspases 3 and 7 activation upon UA treatment.

Conclusion

Our results indicate a potential role of UA as a chemopreventive agent for prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duthie SJ, Dobson VL (1999) Dietary flavonoids protect human colonocyte DNA from oxidative attack in vitro. Eur J Nutr 38:28–34

    Article  CAS  Google Scholar 

  2. Owen RW, Giacosa A, Hull WE et al (2000) The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer 36:1235–1247

    Article  CAS  Google Scholar 

  3. Khan N, Mukhtar H (2013) Modulation of signaling pathways in prostate cancer by green tea polyphenols. Biochem Pharmacol 85:667–672. doi:10.1016/j.bcp.2012.09.027

    Article  CAS  Google Scholar 

  4. Corona G, Deiana M, Incani A et al (2007) Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects. Biochem Biophys Res Commun 362:606–611. doi:10.1016/j.bbrc.2007.08.049

    Article  CAS  Google Scholar 

  5. Corona G, Deiana M, Incani A et al (2009) Hydroxytyrosol inhibits the proliferation of human colon adenocarcinoma cells through inhibition of ERK1/2 and cyclin D1. Mol Nutr Food Res 53:897–903. doi:10.1002/mnfr.200800269

    Article  CAS  Google Scholar 

  6. Mantena SK, Baliga MS, Katiyar SK (2006) Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesis 27:1682–1691. doi:10.1093/carcin/bgl030

    Article  CAS  Google Scholar 

  7. Fabiani R, De Bartolomeo A, Rosignoli P et al (2002) Cancer chemoprevention by hydroxytyrosol isolated from virgin olive oil through G1 cell cycle arrest and apoptosis. Eur J Cancer Prev 11:351–358

    Article  CAS  Google Scholar 

  8. Adams LS, Zhang Y, Seeram NP et al (2010) Pomegranate ellagitannin-derived compounds exhibit anti-proliferative and anti-aromatase activity in breast cancer cells in vitro. Cancer Prev Res (Phila) 3:108–113. doi:10.1158/1940-6207.CAPR-08-0225.Pomegranate

    Article  CAS  Google Scholar 

  9. Kang NJ, Shin SH, Lee HJ, Lee KW (2011) Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacol Ther 130:310–324. doi:10.1016/j.pharmthera.2011.02.004

    Article  CAS  Google Scholar 

  10. Granci V, Dupertuis YM, Pichard C (2010) Angiogenesis as a potential target of pharmaconutrients in cancer therapy. Curr Opin Clin Nutr Metab Care 13:417–422. doi:10.1097/MCO.0b013e3283392656

    Article  CAS  Google Scholar 

  11. Garg AK, Buchholz TA, Aggarwal BB (2005) Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal 7:1630–1647

    Article  CAS  Google Scholar 

  12. Regueiro J, Sánchez-González C, Vallverdú-Queralt A et al (2014) Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap-Orbitrap mass spectrometry. Food Chem 152:340–348. doi:10.1016/j.foodchem.2013.11.158

    Article  CAS  Google Scholar 

  13. Cerdá B, Periago P, Espín JC, Tomás-Barberán FA (2005) Identification of urolithin a as a metabolite produced by human colon microflora from ellagic acid and related compounds. J Agric Food Chem 53:5571–5576. doi:10.1021/jf050384i

    Article  Google Scholar 

  14. Daniel EM, Kfcjpnick AS, Heur Y et al (1989) Extraction, stability, and quantitation of ellagic acid in various fruits and nuts. J Food Compos Anal 349:338–349

    Article  Google Scholar 

  15. Garcia-Muñoz C, Vaillant F (2014) Metabolic fate of ellagitannins: implications for health, and research perspectives for innovative functional foods. Crit Rev Food Sci Nutr 54:1584–1598. doi:10.1080/10408398.2011.644643

    Article  Google Scholar 

  16. Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Int 44:1150–1160. doi:10.1016/j.foodres.2011.04.027

    Article  CAS  Google Scholar 

  17. Larrosa M, Tomás-Barberán FA, Espín JC (2006) The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J Nutr Biochem 17:611–625. doi:10.1016/j.jnutbio.2005.09.004

    Article  CAS  Google Scholar 

  18. Espín JC, Larrosa M, García-Conesa MT, Tomás-Barberán F (2013) Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evid Based Complement Altern Med 2013:270418. doi:10.1155/2013/270418

    Article  Google Scholar 

  19. Seeram NP, Adams LS, Henning SM et al (2005) In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem 16:360–367. doi:10.1016/j.jnutbio.2005.01.006

    Article  CAS  Google Scholar 

  20. Vicinanza R, Zhang Y, Henning SM, Heber D (2013) Pomegranate juice metabolites, ellagic acid and urolithin A, synergistically inhibit androgen-independent prostate cancer cell growth via distinct effects on cell cycle control and apoptosis. Evid Based Complement Altern Med 2013:247504. doi:10.1155/2013/247504

    Article  Google Scholar 

  21. Hardman WE, Ion G, Akinsete JA, Witte TR (2011) Dietary walnut suppressed mammary gland tumorigenesis in the C(3)1 TAg mouse. Nutr Cancer 63:960–970. doi:10.1080/01635581.2011.589959

    Article  CAS  Google Scholar 

  22. Sánchez-González C, Ciudad CJ, Noé V, Izquierdo-Pulido M (2014) Walnut polyphenol metabolites, urolithins A and B, inhibit the expression of the prostate-specific antigen and the androgen receptor in prostate cancer cells. Food Funct 5:2922–2930. doi:10.1039/c4fo00542b

    Article  Google Scholar 

  23. Afman L, Müller M (2006) Nutrigenomics: from molecular nutrition to prevention of disease. J Am Diet Assoc 106:569–576. doi:10.1016/j.jada.2006.01.001

    Article  CAS  Google Scholar 

  24. Selga E, Morales C, Noé V et al (2008) Role of caveolin 1, E-cadherin, Enolase 2 and PKCalpha on resistance to methotrexate in human HT29 colon cancer cells. BMC Med Genomics 1:35. doi:10.1186/1755-8794-1-35

    Article  Google Scholar 

  25. Selga E, Oleaga C, Ramírez S et al (2009) Networking of differentially expressed genes in human cancer cells resistant to methotrexate. Genome Med 1:83. doi:10.1186/gm83

    Article  Google Scholar 

  26. Oleaga C, Ciudad CJ, Izquierdo-Pulido M, Noé V (2013) Cocoa flavanol metabolites activate HNF-3β, Sp1, and NFY-mediated transcription of apolipoprotein AI in human cells. Mol Nutr Food Res 57:986–995. doi:10.1002/mnfr.201200507

    Article  CAS  Google Scholar 

  27. González-Sarrías A, Giménez-Bastida JA, García-Conesa MT et al (2010) Occurrence of urolithins, gut microbiota ellagic acid metabolites and proliferation markers expression response in the human prostate gland upon consumption of walnuts and pomegranate juice. Mol Nutr Food Res 54:311–322. doi:10.1002/mnfr.200900152

    Article  Google Scholar 

  28. Albrecht M, Jiang W, Kumi-Diaka J et al (2004) Pomegranate extracts potently suppress proliferation, xenograft growth, and invasion of human prostate cancer cells. J Med Food 7:274–283. doi:10.1089/1096620041938704

    Article  CAS  Google Scholar 

  29. Bell C, Hawthorne S (2008) Ellagic acid, pomegranate and prostate cancer—a mini review. J Pharm Pharmacol 60:139–144. doi:10.1211/jpp.60.2.0001

    Article  CAS  Google Scholar 

  30. Malik A, Afaq F, Sarfaraz S et al (2005) Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer. Proc Natl Acad Sci 102:14813–14818. doi:10.1073/pnas.0505870102

    Article  CAS  Google Scholar 

  31. Seeram NP, Aronson WJ, Zhang Y et al (2007) Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J Agric Food Chem 55:7732–7737. doi:10.1021/jf071303g

    Article  CAS  Google Scholar 

  32. Espín JC, González-Barrio R, Cerdá B et al (2007) Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. J Agric Food Chem 55:10476–10485. doi:10.1021/jf0723864

    Article  Google Scholar 

  33. González-Sarrías A, Giménez-Bastida JA, Núñez-Sánchez MA et al (2013) Phase-II metabolism limits the antiproliferative activity of urolithins in human colon cancer cells. Eur J Nutr. doi:10.1007/s00394-013-0589-4

    Google Scholar 

  34. Dutto I, Tillhon M, Cazzalini O et al (2014) Biology of the cell cycle inhibitor p21(CDKN1A): molecular mechanisms and relevance in chemical toxicology. Arch Toxicol. doi:10.1007/s00204-014-1430-4

    Google Scholar 

  35. Wang LG, Ossowski L, Ferrari AC (2001) Overexpressed androgen receptor linked to p21 WAF1 silencing may be responsible for androgen independence and resistance to apoptosis of a prostate cancer cell line. Cancer Res 61:7544–7551

    CAS  Google Scholar 

  36. Piccolo M, Crispi S (2012) The dual role played by p21 may influence the apoptotic or anti-apoptotic fate in cancer. J Can Res Updates 1:189–202

    Google Scholar 

  37. Narayanan BA, Geoffroy O, Willingham MC et al (1999) p53/p21(WAF1/CIP1) expression and its possible role in G1 arrest and apoptosis in ellagic acid treated cancer cells. Cancer Lett 136:215–221

    Article  CAS  Google Scholar 

  38. Zaridze DG (2008) Molecular epidemiology of cancer. Biochemistry 73:532–542. doi:10.1134/S0006297908050064

    CAS  Google Scholar 

  39. Alshatwi AA, Hasan TN, Shafi G et al (2012) Validation of the antiproliferative effects of organic extracts from the green husk of Juglans regia L. on PC-3 human prostate cancer cells by assessment of apoptosis-related genes. Evid Based Complement Altern Med 2012:103026. doi:10.1155/2012/103026

    Article  Google Scholar 

  40. Xu H, Yu X, Qu S, Sui D (2013) Juglone, isolated from Juglans mandshurica Maxim, induces apoptosis via down-regulation of AR expression in human prostate cancer LNCaP cells. Bioorg Med Chem Lett 23:3631–3634. doi:10.1016/j.bmcl.2013.04.007

    Article  CAS  Google Scholar 

  41. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15:1126–1132. doi:10.1158/1078-0432.CCR-08-0144

    Article  CAS  Google Scholar 

  42. Naiki-Ito A, Chewonarin T, Tang M, Pitchakarn P, Kuno T, Ogawa K, Asamoto M, Shirai T, Takahashi S (2015) Ellagic acid, a component of pomegranate fruit juice, suppresses androgen-dependent prostate carcinogenesis via induction of apoptosis. Prostate 75:151–160. doi:10.1002/pros.22900

    Article  CAS  Google Scholar 

  43. Moroz A, Delella FK, Lacorte LM et al (2013) Fibronectin induces MMP2 expression in human prostate cancer cells. Biochem Biophys Res Commun 430:1319–1321. doi:10.1016/j.bbrc.2012.12.031

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the California Walnut Commission (FBG-306913) and Spanish Government of Science and Innovation (SAF2011-23582 and SAF2014-51825-R). C.S.G. was supported by a scholarship from the “Consejo Nacional de Ciencia y Tecnología, CONACYT” from Mexico. Our group holds the Quality Mention from the Government of Catalonia, Spain (2014SGR96).

Conflict of interest

Authors have no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos J. Ciudad.

Additional information

Véronique Noé and Maria Izquierdo-Pulido share senior authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-González, C., Ciudad, C.J., Izquierdo-Pulido, M. et al. Urolithin A causes p21 up-regulation in prostate cancer cells. Eur J Nutr 55, 1099–1112 (2016). https://doi.org/10.1007/s00394-015-0924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0924-z

Keywords

Navigation