Skip to main content
Log in

Associations between a posteriori defined dietary patterns and bone mineral density in adolescents

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Dietary pattern analysis may uncover the joint effects of multiple dietary components on bone health, but such research is scarce and targets mostly adults.

Methods

We quantified prospective associations between dietary patterns and bone mineral density (BMD) in 1,007 adolescents of a cohort born in 1990 and recruited at schools in Porto during the 2003/2004 school year. Forearm BMD was measured using dual-energy X-ray absorptiometry. Participants’ dietary patterns were classified “Healthier”, “Dairy products”, “Fast food and sweets” and “Lower intake” according to previously identified patterns obtained in a larger sample of 1,489 participants using the K-means method. Using dietary patterns at 13 years old as the main exposure, associations were estimated cross-sectionally (with BMD at the age of 13) and prospectively (with annual BMD variation between 13 and 17 years), using linear regression coefficients adjusted for height, weight, energy intake and, in girls, for menarche age.

Results

No significant associations between the a posteriori dietary patterns identified and mean BMD at 13 were found. However, among girls, adherence to a pattern characterized by low intake of energy and all food groups was negatively associated with annual BMD variation between 13 and 17 years [adjusted coefficient (95 % CI) −0.451 (−0.827; −0.074) mg·cm−2·year−1].

Conclusions

Although results showed that, in girls, adherence to a “Lower intake” dietary pattern is associated with lower annual BMD variation throughout adolescence, overall, there were no consistent associations between dietary patterns and forearm BMD in adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656

    Google Scholar 

  2. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259

    Article  CAS  Google Scholar 

  3. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. Osteoporos Int 11(12):985–1009

    Article  CAS  Google Scholar 

  4. Johnston CC, Slemenda CW (1994) Peak bone mass, bone loss and risk of fracture. Osteoporos Int 4(Suppl 1):43–45

    Article  Google Scholar 

  5. McGuigan FE, Murray L, Gallagher A, Davey-Smith G, Neville CE, Van’t Hof R, Boreham C, Ralston SH (2002) Genetic and environmental determinants of peak bone mass in young men and women. J Bone Miner Res 17(7):1273–1279. doi:10.1359/jbmr.2002.17.7.1273

    Article  CAS  Google Scholar 

  6. Weaver CM (2008) The role of nutrition on optimizing peak bone mass. Asia Pac J Clin Nutr 17(Suppl 1):135–137

    Google Scholar 

  7. Kontogianni MD, Yiannakouris N (2009) Diet and bone health—the perspective of dietary pattern analysis. Eur Musculoskelet Rev 4(1):73–74

    Google Scholar 

  8. Hu FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13(1):3–9

    Article  CAS  Google Scholar 

  9. Kant AK (2004) Dietary patterns and health outcomes. J Am Diet Assoc 104(4):615–635. doi:10.1016/j.jada.2004.01.010

    Article  Google Scholar 

  10. Tucker KL (2010) Dietary patterns, approaches, and multicultural perspective. Appl Physiol Nutr Metab 35(2):211–218. doi:10.1139/H10-010

    Article  Google Scholar 

  11. Jacques PF, Tucker KL (2001) Are dietary patterns useful for understanding the role of diet in chronic disease? Am J Clin Nutr 73(1):1–2

    CAS  Google Scholar 

  12. Tucker KL, Chen H, Hannan MT, Cupples LA, Wilson PW, Felson D, Kiel DP (2002) Bone mineral density and dietary patterns in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr 76(1):245–252

    CAS  Google Scholar 

  13. Okubo H, Sasaki S, Horiguchi H, Oguma E, Miyamoto K, Hosoi Y, Kim MK, Kayama F (2006) Dietary patterns associated with bone mineral density in premenopausal Japanese farmwomen. Am J Clin Nutr 83(5):1185–1192

    CAS  Google Scholar 

  14. Kontogianni MD, Melistas L, Yannakoulia M, Malagaris I, Panagiotakos DB, Yiannakouris N (2009) Association between dietary patterns and indices of bone mass in a sample of Mediterranean women. Nutrition 25(2):165–171. doi:10.1016/j.nut.2008.07.019

    Article  Google Scholar 

  15. Hardcastle AC, Aucott L, Fraser WD, Reid DM, Macdonald HM (2010) Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women. Eur J Clin Nutr 65(3):378–385. doi:10.1038/ejcn.2010.264

    Article  Google Scholar 

  16. Langsetmo L, Poliquin S, Hanley DA, Prior JC, Barr S, Anastassiades T, Towheed T, Goltzman D, Kreiger N (2010) Dietary patterns in Canadian men and women ages 25 and older: relationship to demographics, body mass index, and bone mineral density. BMC Musculoskelet Disord 11:20. doi:10.1186/1471-2474-11-20

    Article  Google Scholar 

  17. McNaughton SA, Wattanapenpaiboon N, Wark JD, Nowson CA (2011) An energy-dense, nutrient-poor dietary pattern is inversely associated with bone health in women. J Nutr 141(8):1516–1523. doi:10.3945/jn.111.138271

    Article  CAS  Google Scholar 

  18. Fairweather-Tait SJ, Skinner J, Guile GR, Cassidy A, Spector TD, MacGregor AJ (2011) Diet and bone mineral density study in postmenopausal women from the TwinsUK registry shows a negative association with a traditional English dietary pattern and a positive association with wine. Am J Clin Nutr 94(5):1371–1375. doi:10.3945/ajcn.111.019992

    Article  CAS  Google Scholar 

  19. Whittle CR, Woodside JV, Cardwell CR, McCourt HJ, Young IS, Murray LJ, Boreham CA, Gallagher AM, Neville CE, McKinley MC (2012) Dietary patterns and bone mineral status in young adults: the Northern Ireland Young Hearts Project. Br J Nutr 1–11. doi:10.1017/S0007114511006787

  20. Pedone C, Napoli N, Pozzilli P, Rossi FF, Lauretani F, Bandinelli S, Ferrucci L, Antonelli-Incalzi R (2011) Dietary pattern and bone density changes in elderly women: a longitudinal study. J Am Coll Nutr 30(2):149–154

    Article  Google Scholar 

  21. Karamati M, Jessri M, Shariati-Bafghi SE, Rashidkhani B (2012) Dietary patterns in relation to bone mineral density among menopausal Iranian women. Calcif Tissue Int 91(1):40–49. doi:10.1007/s00223-012-9608-3

    Article  CAS  Google Scholar 

  22. Li SJ, Paik HY, Joung H (2006) Dietary patterns are associated with sexual maturation in Korean children. Br J Nutr 95(4):817–823

    Article  CAS  Google Scholar 

  23. Harvey NC, Robinson SM, Crozier SR, Marriott LD, Gale CR, Cole ZA, Inskip HM, Godfrey KM, Cooper C (2009) Breast-feeding and adherence to infant feeding guidelines do not influence bone mass at age 4 years. Br J Nutr 102(6):915–920. doi:10.1017/S0007114509317420

    Article  CAS  Google Scholar 

  24. Wosje KS, Khoury PR, Claytor RP, Copeland KA, Hornung RW, Daniels SR, Kalkwarf HJ (2010) Dietary patterns associated with fat and bone mass in young children. Am J Clin Nutr 92(2):294–303. doi:10.3945/ajcn.2009.28925

    Article  CAS  Google Scholar 

  25. Noh HY, Song YJ, Lee JE, Joung H, Park MK, Li SJ, Paik HY (2011) Dietary patterns are associated with physical growth among school girls aged 9–11 years. Nutr Res Pract 5(6):569–577. doi:10.4162/nrp.2011.5.6.569

    Article  CAS  Google Scholar 

  26. Shin S, Hong K, Kang SW, Joung H (2013) A milk and cereal dietary pattern is associated with a reduced likelihood of having a low bone mineral density of the lumbar spine in Korean adolescents. Nutr Res 33(1):59–66. doi:10.1016/j.nutres.2012.11.003

    Article  CAS  Google Scholar 

  27. Ramos E (2006) Health determinants in porto adolescents. PhD thesis. University of Porto, Porto

  28. Ramos E, Barros H (2007) Family and school determinants of overweight in 13-year-old Portuguese adolescents. Acta Paediatr 96(2):281–286

    Article  Google Scholar 

  29. Lucas R, Ramos E, Severo M, Barros H (2011) Potential for a direct weight-independent association between adiposity and forearm bone mineral density during adolescence. Am J Epidemiol 174(6):691–700. doi:10.1093/aje/kwr131

    Article  Google Scholar 

  30. Aires L, Silva G, Martins C, Santos MP, Ribeiro JC, Mota J (2012) Influence of activity patterns in fitness during youth. Int J Sports Med 33(4):325–329. doi:10.1055/s-0031-1297955

    Article  CAS  Google Scholar 

  31. Araujo J, Severo M, Lopes C, Ramos E (2011) Food sources of nutrients among 13-year-old Portuguese adolescents. Public Health Nutr 14(11):1970–1978. doi:10.1017/S1368980011001224

    Article  Google Scholar 

  32. Lopes C, Aro A, Azevedo A, Ramos E, Barros H (2007) Intake and adipose tissue composition of fatty acids and risk of myocardial infarction in a male Portuguese community sample. J Am Diet Assoc 107(2):276–286. doi:10.1016/j.jada.2006.11.008

    Article  CAS  Google Scholar 

  33. Teixeira J (2011) Dietary patterns identification in Porto adolescents. Master thesis, University of Porto, Porto (in Portuguese)

  34. Newby PK, Tucker KL (2004) Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev 62(5):177–203

    Article  CAS  Google Scholar 

  35. Nieves JW, Melsop K, Curtis M, Kelsey JL, Bachrach LK, Greendale G, Sowers MF, Sainani KL (2010) Nutritional factors that influence change in bone density and stress fracture risk among young female cross-country runners. PM R 2(8):740–750. doi:10.1016/j.pmrj.2010.04.020

    Article  Google Scholar 

  36. Judex S, Donahue LR, Rubin C (2002) Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton. FASEB J 16(10):1280–1282. doi:10.1096/fj.01-0913fje

    CAS  Google Scholar 

  37. Brodersen NH, Steptoe A, Boniface DR, Wardle J (2007) Trends in physical activity and sedentary behaviour in adolescence: ethnic and socioeconomic differences. Br J Sports Med 41(3):140–144. doi:10.1136/bjsm.2006.031138

    Article  Google Scholar 

  38. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, Roche AF, Johnson CL (2002) 2000 CDC growth charts for the United States: methods and development. Vital Health Stat Ser 11 Data Natl Health Surv 246:1–190

    Google Scholar 

  39. Macdonald H, Kontulainen S, Petit M, Janssen P, McKay H (2006) Bone strength and its determinants in pre- and early-pubertal boys and girls. Bone 39(3):598–608. doi:10.1016/j.bone.2006.02.057

    Article  Google Scholar 

  40. Oliveira A, Rodriguez-Artalejo F, Gaio R, Santos AC, Ramos E, Lopes C (2011) Major habitual dietary patterns are associated with acute myocardial infarction and cardiovascular risk markers in a southern European population. J Am Diet Assoc 111(2):241–250. doi:10.1016/j.jada.2010.10.042

    Article  Google Scholar 

  41. Waijers PM, Feskens EJ, Ocke MC (2007) A critical review of predefined diet quality scores. Br J Nutr 97(2):219–231. doi:10.1017/S0007114507250421

    Article  CAS  Google Scholar 

  42. Pryer JA, Nichols R, Elliott P, Thakrar B, Brunner E, Marmot M (2001) Dietary patterns among a national random sample of British adults. J Epidemiol Community Health 55(1):29–37

    Article  CAS  Google Scholar 

  43. van Dam RM (2005) New approaches to the study of dietary patterns. Br J Nutr 93(5):573–574

    Article  Google Scholar 

  44. Michels KB, Schulze MB (2005) Can dietary patterns help us detect diet–disease associations? Nutr Res Rev 18(2):241–248. doi:10.1079/NRR2005107

    Article  Google Scholar 

  45. Javaid MK, Cooper C (2002) Prenatal and childhood influences on osteoporosis. Best Pract Res Clin Endocrinol Metab 16(2):349–367. doi:10.1053/beem.2002.0199

    Article  CAS  Google Scholar 

  46. Michels KB (2003) Nutritional epidemiology—past, present, future. Int J Epidemiol 32(4):486–488

    Article  Google Scholar 

  47. Togo P, Osler M, Sorensen TI, Heitmann BL (2001) Food intake patterns and body mass index in observational studies. Int J Obes Relat Metab Disord 25(12):1741–1751. doi:10.1038/sj.ijo.0801819

    Article  CAS  Google Scholar 

  48. Livingstone MB, Black AE (2003) Markers of the validity of reported energy intake. J Nutr 133(Suppl 3):895S–920S

    CAS  Google Scholar 

  49. Freedman LS, Schatzkin A, Midthune D, Kipnis V (2011) Dealing with dietary measurement error in nutritional cohort studies. J Natl Cancer Inst 103(14):1086–1092. doi:10.1093/jnci/djr189

    Article  Google Scholar 

  50. Noethlings U, Hoffmann K, Bergmann MM, Boeing H (2003) Portion size adds limited information on variance in food intake of participants in the EPIC-Potsdam study. J Nutr 133(2):510–515

    CAS  Google Scholar 

  51. Hu FB, Rimm E, Smith-Warner SA, Feskanich D, Stampfer MJ, Ascherio A, Sampson L, Willett WC (1999) Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am J Clin Nutr 69(2):243–249

    CAS  Google Scholar 

  52. Khani BR, Ye W, Terry P, Wolk A (2004) Reproducibility and validity of major dietary patterns among Swedish women assessed with a food-frequency questionnaire. J Nutr 134(6):1541–1545

    CAS  Google Scholar 

  53. Madruga SW, Araujo CL, Bertoldi AD, Neutzling MB (2012) Tracking of dietary patterns from childhood to adolescence. Rev Saude Publica 46(2):376–386

    Article  Google Scholar 

  54. Patterson E, Warnberg J, Kearney J, Sjostrom M (2009) The tracking of dietary intakes of children and adolescents in Sweden over six years: the European Youth Heart Study. Int J Behav Nutr Phys Act 6:91. doi:10.1186/1479-5868-6-91

    Article  Google Scholar 

  55. Cutler GJ, Flood A, Hannan P, Neumark-Sztainer D (2009) Major patterns of dietary intake in adolescents and their stability over time. J Nutr 139(2):323–328. doi:10.3945/jn.108.090928

    Article  CAS  Google Scholar 

  56. te Velde SJ, Twisk JW, Brug J (2007) Tracking of fruit and vegetable consumption from adolescence into adulthood and its longitudinal association with overweight. Br J Nutr 98(2):431–438. doi:10.1017/S0007114507721451

    Article  Google Scholar 

  57. Mikkila V, Rasanen L, Raitakari OT, Pietinen P, Viikari J (2005) Consistent dietary patterns identified from childhood to adulthood: the cardiovascular risk in Young Finns study. Br J Nutr 93(6):923–931

    Article  CAS  Google Scholar 

  58. Oellingrath IM, Svendsen MV, Brantsaeter AL (2011) Tracking of eating patterns and overweight—a follow-up study of Norwegian schoolchildren from middle childhood to early adolescence. Nutr J 10:106. doi:10.1186/1475-2891-10-106

    Article  Google Scholar 

  59. Crabtree N, Ward K (2009) Bone densitometry: current status and future perspectives. Endocr Dev 16:58–72. doi:10.1159/000223689

    Article  Google Scholar 

  60. Flynn J, Foley S, Jones G (2007) Can BMD assessed by DXA at age 8 predict fracture risk in boys and girls during puberty? An eight-year prospective study. J Bone Miner Res 22(9):1463–1467. doi:10.1359/jbmr.070509

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Associação Portuguesa de Osteoporose (APO) for making the bone densitometry equipment available for both evaluations.

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Monjardino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monjardino, T., Lucas, R., Ramos, E. et al. Associations between a posteriori defined dietary patterns and bone mineral density in adolescents. Eur J Nutr 54, 273–282 (2015). https://doi.org/10.1007/s00394-014-0708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0708-x

Keywords

Navigation