Skip to main content

Advertisement

Log in

Autophagy inhibitor 3-methyladenine potentiates apoptosis induced by dietary tocotrienols in breast cancer cells

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Introduction

Tocomin® represents commercially available mixture of naturally occurring tocotrienols (T3s) and tocopherols extracted from palm oil/palm fruits that possess powerful antioxidant, anticancer, neuro/cardioprotective and cholesterol-lowering properties. Cellular autophagy represents a defense mechanism against oxidative stress and several anticancer compounds. Recently, we reported that T3s induce apoptosis and endoplasmic reticulum stress in breast cancer cells.

Methodology

We studied the effects of Tocomin® on MCF-7 and MDA-MB 231 breast cancer cells and non-tumor MCF-10A cells.

Results

Tocomin® inhibited cell proliferation and induced apoptosis in both MCF-7 and MDA-MB 231 breast cancer cell lines without affecting the viability of MCF-10A cells. We also showed that Tocomin® negatively modulates phosphoinositide 3-kinase and mTOR pathways and induces cytoprotective autophagic response in triple negative MDA-MB 231 cells. Lastly, we demonstrate that autophagy inhibitor 3-methyladenine (3-MA) potentiated the apoptosis induced by Tocomin® in MDA-MB 231 cells.

Conclusion

Together, our data indicate anticancer effects of Tocomin® in breast cancer cells, which is potentiated by the autophagy inhibitor 3-MA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

T3s:

Tocotrienols

Ts:

Tocopherols

3-MA:

3-Methyladenine

ER:

Estrogen receptor

TRF:

Tocotrienol-rich fraction of palm oil

γ-T3:

Gamma tocotrienol

ER stress:

Endoplasmic reticulum stress

UPR:

Unfolded protein response

MDC:

Monodansylcadaverine

PI3K:

Phosphoinositide 3-kinase

mTOR:

Mammalian Target of Rapamycin

LC3β:

Microtubule-associated protein 1 light chain 3 beta

References

  1. Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Canali R, Virgili F (2004) Tocotrienol-rich fraction from palm oil and gene expression in human breast cancer cells. Ann NY Acad Sci 1031:143–157

    Article  CAS  Google Scholar 

  2. Komiyama K, Iizuka K, Yamaoka M, Watanabe H, Tsuchiya N, Umezawa I (1989) Studies on the biological activity of tocotrienols. Chem Pharm Bull (Tokyo) 37(5):1369–1371

    Article  CAS  Google Scholar 

  3. Sen CK, Khanna S, Rink C, Roy S (2007) Tocotrienols: the emerging face of natural vitamin E. Vitam Horm 76:203–261

    Article  CAS  Google Scholar 

  4. Noguchi N, Hanyu R, Nonaka A, Okimoto Y, Kodama T (2003) Inhibition of THP-1 cell adhesion to endothelial cells by alpha-tocopherol and alpha-tocotrienol is dependent on intracellular concentration of the antioxidants. Free Radic Biol Med 34(12):1614–1620

    Article  CAS  Google Scholar 

  5. Srivastava JK, Gupta S (2006) Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells. Biochem Biophys Res Commun 346(2):447–453

    Article  CAS  Google Scholar 

  6. Sakai M, Okabe M, Yamasaki M, Tachibana H, Yamada K (2004) Induction of apoptosis by tocotrienol in rat hepatoma dRLh-84 cells. Anticancer Res 24(3a):1683–1688

    CAS  Google Scholar 

  7. Ling MT, Luk SU, Al-Ejeh F, Khanna KK (2011) Tocotrienol as a potential anticancer agent. Carcinogenesis. doi:10.1093/carcin/bgr261

    Google Scholar 

  8. Nesaretnam K, Meganathan P, Veerasenan SD, Selvaduray KR (2012) Tocotrienols and breast cancer: the evidence to date. Genes Nutr 7(1):3–9. doi:10.1007/s12263-011-0224-z

    Article  CAS  Google Scholar 

  9. Sylvester PW, Wali VB, Bachawal SV, Shirode AB, Ayoub NM, Akl MR (2012) Tocotrienol combination therapy results in synergistic anticancer response. Front Biosci: J Virtual Libr 17:3183–3195

    Google Scholar 

  10. Kannappan R, Gupta SC, Kim JH, Aggarwal BB (2012) Tocotrienols fight cancer by targeting multiple cell signaling pathways. Genes Nutr 7(1):43–52. doi:10.1007/s12263-011-0220-3

    Article  CAS  Google Scholar 

  11. de Mesquita ML, Araujo RM, Bezerra DP, Filho RB, de Paula JE, Silveira ER, Pessoa C, de Moraes MO, Costa Lotufo LV, Espindola LS (2011) Cytotoxicity of delta-tocotrienols from Kielmeyera coriacea against cancer cell lines. Bioorg Med Chem 19(1):623–630. doi:10.1016/j.bmc.2010.10.044

    Article  Google Scholar 

  12. Luk SU, Yap WN, Chiu YT, Lee DT, Ma S, Lee TK, Vasireddy RS, Wong YC, Ching YP, Nelson C, Yap YL, Ling MT (2011) Gamma-tocotrienol as an effective agent in targeting prostate cancer stem cell-like population. Int J Cancer 128(9):2182–2191. doi:10.1002/ijc.25546

    Article  CAS  Google Scholar 

  13. Taridi NM, Yahaya MF, Teoh SL, Latiff AA, Ngah WZ, Das S, Mazlan M (2011) Tocotrienol rich fraction (TRF) supplementation protects against oxidative DNA damage and improves cognitive functions in Wistar rats. La Clinica terapeutica 162(2):93–98

    CAS  Google Scholar 

  14. Ren Z, Pae M, Dao MC, Smith D, Meydani SN, Wu D (2010) Dietary supplementation with tocotrienols enhances immune function in C57BL/6 mice. J Nutr 140(7):1335–1341. doi:10.3945/jn.110.121434

    Article  CAS  Google Scholar 

  15. Hafid SR, Radhakrishnan AK, Nesaretnam K (2010) Tocotrienols are good adjuvants for developing cancer vaccines. BMC Cancer 10:5. doi:10.1186/1471-2407-10-5

    Article  Google Scholar 

  16. Shah SJ, Sylvester PW (2005) Gamma-tocotrienol inhibits neoplastic mammary epithelial cell proliferation by decreasing Akt and nuclear factor kappaB activity. Exp Biol Med (Maywood) 230(4):235–241

    CAS  Google Scholar 

  17. Shah S, Sylvester PW (2004) Tocotrienol-induced caspase-8 activation is unrelated to death receptor apoptotic signaling in neoplastic mammary epithelial cells. Exp Biol Med (Maywood) 229(8):745–755

    CAS  Google Scholar 

  18. Shin-Kang S, Ramsauer VP, Lightner J, Chakraborty K, Stone W, Campbell S, Reddy SA, Krishnan K (2011) Tocotrienols inhibit AKT and ERK activation and suppress pancreatic cancer cell proliferation by suppressing the ErbB2 pathway. Free Radic Biol Med 51(6):1164–1174. doi:10.1016/j.freeradbiomed.2011.06.008

    Article  CAS  Google Scholar 

  19. Katuru R, Fernandes NV, Elfakhani M, Dutta D, Mills N, Hynds DL, King C, Mo H (2011) Mevalonate depletion mediates the suppressive impact of geranylgeraniol on murine B16 melanoma cells. Exp Biol Med 236(5):604–613. doi:10.1258/ebm.2011.010379

    Article  CAS  Google Scholar 

  20. Elangovan S, Hsieh TC, Wu JM (2008) Growth inhibition of human MDA-mB-231 breast cancer cells by delta-tocotrienol is associated with loss of cyclin D1/CDK4 expression and accompanying changes in the state of phosphorylation of the retinoblastoma tumor suppressor gene product. Anticancer Res 28(5A):2641–2647

    CAS  Google Scholar 

  21. Loganathan R, Selvaduray KR, Nesaretnam K, Radhakrishnan AK (2013) Tocotrienols promote apoptosis in human breast cancer cells by inducing poly(ADP-ribose) polymerase cleavage and inhibiting nuclear factor kappa-B activity. Cell Prolif 46(2):203–213. doi:10.1111/cpr.12014

    Article  CAS  Google Scholar 

  22. Gopalan A, Yu W, Jiang Q, Jang Y, Sanders BG, Kline K (2012) Involvement of de novo ceramide synthesis in gamma-tocopherol and gamma-tocotrienol-induced apoptosis in human breast cancer cells. Mol Nutr Food Res 56(12):1803–1811. doi:10.1002/mnfr.201200350

    Article  CAS  Google Scholar 

  23. Liu HK, Wang Q, Li Y, Sun WG, Liu JR, Yang YM, Xu WL, Sun XR, Chen BQ (2010) Inhibitory effects of gamma-tocotrienol on invasion and metastasis of human gastric adenocarcinoma SGC-7901 cells. J Nutr Biochem 21(3):206–213. doi:10.1016/j.jnutbio.2008.11.004

    Article  CAS  Google Scholar 

  24. Xu YW, Wang B, Ding CH, Li T, Gu F, Zhou C (2011) Differentially expressed micoRNAs in human oocytes. J Assist Reprod Genet 28(6):559–566. doi:10.1007/s10815-011-9590-0

    Article  Google Scholar 

  25. Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Reimann K, Razak G, Virgili F (2004) Tocotrienol-rich fraction from palm oil affects gene expression in tumors resulting from MCF-7 cell inoculation in athymic mice. Lipids 39(5):459–467

    Article  CAS  Google Scholar 

  26. Takahashi K, Loo G (2004) Disruption of mitochondria during tocotrienol-induced apoptosis in MDA-MB-231 human breast cancer cells. Biochem Pharmacol 67(2):315–324

    Article  CAS  Google Scholar 

  27. Constantinou C, Neophytou CM, Vraka P, Hyatt JA, Papas KA, Constantinou AI (2011) Induction of DNA damage and caspase-independent programmed cell death by Vitamin E. Nutr Cancer. doi:10.1080/01635581.2012.630167

    Google Scholar 

  28. Agarwal MK, Agarwal ML, Athar M, Gupta S (2004) Tocotrienol-rich fraction of palm oil activates p53, modulates Bax/Bcl2 ratio and induces apoptosis independent of cell cycle association. Cell Cycle 3(2):205–211

    Article  CAS  Google Scholar 

  29. Patacsil D, Tran AT, Cho YS, Suy S, Saenz F, Malyukova I, Ressom H, Collins SP, Clarke R, Kumar D (2012) Gamma-tocotrienol induced apoptosis is associated with unfolded protein response in human breast cancer cells. J Nutr Biochem 23(1):93–100. doi:10.1016/j.jnutbio.2010.11.012

    Article  CAS  Google Scholar 

  30. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14(2):230–239. doi:10.1038/sj.cdd.4401984

    Article  CAS  Google Scholar 

  31. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26(24):9220–9231. doi:10.1128/MCB.01453-06

    Article  CAS  Google Scholar 

  32. Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, Lambin P, van der Kogel AJ, Koritzinsky M, Wouters BG (2010) The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Investig 120(1):127–141. doi:10.1172/JCI40027

    Article  CAS  Google Scholar 

  33. Lee H, Noh JY, Oh Y, Kim Y, Chang JW, Chung CW, Lee ST, Kim M, Ryu H, Jung YK (2012) IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Hum Mol Genet 21(1):101–114. doi:10.1093/hmg/ddr445

    Article  Google Scholar 

  34. Shi YH, Ding ZB, Zhou J, Hui B, Shi GM, Ke AW, Wang XY, Dai Z, Peng YF, Gu CY, Qiu SJ, Fan J (2011) Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy 7(10):1159–1172. doi:10.4161/auto.7.10.16818

    Article  CAS  Google Scholar 

  35. Nishikawa T, Tsuno NH, Okaji Y, Shuno Y, Sasaki K, Hongo K, Sunami E, Kitayama J, Takahashi K, Nagawa H (2010) Inhibition of autophagy potentiates sulforaphane-induced apoptosis in human colon cancer cells. Ann Surg Oncol 17(2):592–602. doi:10.1245/s10434-009-0696-x

    Article  Google Scholar 

  36. Carew JS, Medina EC, Esquivel JA 2nd, Mahalingam D, Swords R, Kelly K, Zhang H, Huang P, Mita AC, Mita MM, Giles FJ, Nawrocki ST (2010) Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 14(10):2448–2459. doi:10.1111/j.1582-4934.2009.00832.x

    Article  CAS  Google Scholar 

  37. Livesey KM, Tang D, Zeh HJ, Lotze MT (2009) Autophagy inhibition in combination cancer treatment. Curr Opin Investig Drugs 10(12):1269–1279

    CAS  Google Scholar 

  38. Ren Y, Huang F, Liu Y, Yang Y, Jiang Q, Xu C (2009) Autophagy inhibition through PI3K/Akt increases apoptosis by sodium selenite in NB4 cells. BMB Rep 42(9):599–604

    Article  CAS  Google Scholar 

  39. Hou YJ, Dong LW, Tan YX, Yang GZ, Pan YF, Li Z, Tang L, Wang M, Wang Q, Wang HY (2011) Inhibition of active autophagy induces apoptosis and increases chemosensitivity in cholangiocarcinoma. Lab Invest 91(8):1146–1157. doi:10.1038/labinvest.2011.97

    Article  CAS  Google Scholar 

  40. Xie BS, Zhao HC, Yao SK, Zhuo DX, Jin B, Lv DC, Wu CL, Ma DL, Gao C, Shu XM, Ai ZL (2011) Autophagy inhibition enhances etoposide-induced cell death in human hepatoma G2 cells. Int J Mol Med 27(4):599–606. doi:10.3892/ijmm.2011.607

    CAS  Google Scholar 

  41. Chen LH, Loong CC, Su TL, Lee YJ, Chu PM, Tsai ML, Tsai PH, Tu PH, Chi CW, Lee HC, Chiou SH (2011) Autophagy inhibition enhances apoptosis triggered by BO-1051, an N-mustard derivative, and involves the ATM signaling pathway. Biochem Pharmacol 81(5):594–605. doi:10.1016/j.bcp.2010.12.011

    Article  CAS  Google Scholar 

  42. Shibata A, Nakagawa K, Shirakawa H, Kobayashi T, Kawakami Y, Takashima R, Ohashi A, Sato S, Ohsaki Y, Kimura F, Kimura T, Tsuduki T, Komai M, Miyazawa T (2012) Physiological effects and tissue distribution from large doses of tocotrienol in rats. Biosci Biotechnol Biochem 76(9):1805–1808

    Article  CAS  Google Scholar 

  43. Nesaretnam K, Dorasamy S, Darbre PD (2000) Tocotrienols inhibit growth of ZR-75-1 breast cancer cells. Int J Food Sci Nutr 51(Suppl):S95–S103

    Article  CAS  Google Scholar 

  44. Nesaretnam K, Stephen R, Dils R, Darbre P (1998) Tocotrienols inhibit the growth of human breast cancer cells irrespective of estrogen receptor status. Lipids 33(5):461–469

    Article  CAS  Google Scholar 

  45. Miyoshi N, Wakao Y, Tomono S, Tatemichi M, Yano T, Ohshima H (2011) The enhancement of the oral bioavailability of gamma-tocotrienol in mice by gamma-cyclodextrin inclusion. J Nutr Biochem 22(12):1121–1126. doi:10.1016/j.jnutbio.2010.09.011

    Article  CAS  Google Scholar 

  46. Fu JY, Che HL, Tan DM, Teng KT (2014) Bioavailability of tocotrienols: evidence in human studies. Nutr Metab 11(1):5. doi:10.1186/1743-7075-11-5

    Article  Google Scholar 

  47. Yap SP, Yuen KH, Wong JW (2001) Pharmacokinetics and bioavailability of alpha-, gamma- and delta-tocotrienols under different food status. J Pharm Pharmacol 53(1):67–71

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Carotech for the gift of Tocomin®. HK is an MARC U*STAR Honors Fellow (GM087172). We thank Dr. Anvesha Srivastava for assisting with submission of the manuscript. DK is funded by CA141935, CA162264 from the National Cancer Institute.

Conflict of interest

The authors have no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar.

Additional information

Anh Thu Tran and Malathi Ramalinga have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, A.T., Ramalinga, M., Kedir, H. et al. Autophagy inhibitor 3-methyladenine potentiates apoptosis induced by dietary tocotrienols in breast cancer cells. Eur J Nutr 54, 265–272 (2015). https://doi.org/10.1007/s00394-014-0707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0707-y

Keywords

Navigation