Skip to main content

Advertisement

Log in

The α′ subunit of β-conglycinin and the A1–5 subunits of glycinin are not essential for many hypolipidemic actions of dietary soy proteins in rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

This study examined the effects of dietary soy protein (SP) lacking different storage protein subunits and isoflavones (ISF) on the abdominal fat, blood lipids, thyroid hormones, and enzymatic activities in rats.

Methods

Weanling Sprague–Dawley rats (8 males and 8 females/group) were fed diets containing either 20 % casein without or with supplemental isoflavones or alcohol-washed SP isolate or SP concentrates (SPC) prepared from 6 different soy bean lines for 8 weeks.

Results

Feeding of diets containing SPC regardless of their subunit compositions significantly lowered relative liver weights, blood total, free, and LDL cholesterol in both genders (P < 0.05) and also reduced serum free fatty acids (FFA) and abdominal fat in females (P < 0.05) compared to the casein or casein + ISF diets. Dietary SPC significantly elevated the plasma free triiodothyronine (T3) in both genders and total T3 in females compared to the casein diet (P < 0.05). The SPC lacking β-conglycinin α′ and either the glycinin A1–3 or A1–5 subunits increased total T3 in males and reduced plasma enzymatic activities of creatine kinase and lactate dehydrogenase compared to casein or casein + ISF diet (P < 0.05).

Conclusions

Soy isoflavones were mainly responsible for the hypocholesterolemic effects and increased plasma free T3, whereas reduction in FFA, abdominal fat, liver weight and increased plasma total T3 were the effects of the soy proteins. Neither the α′ subunit of β-conglycinin nor the A1–5 subunits of glycinin are essential for the hypolipidemic properties of soy proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

CK:

Creatine kinase

FFA:

Free fatty acids

LDH:

Lactate dehydrogenase

SP:

Soy protein

SPI:

Soy protein isolate

SPC:

Soy protein concentrate

T3:

Triiodothyronine

T4:

Thyroxine

References

  1. Anderson JW, Bush HM (2011) Soy protein effects on serum lipoproteins: a quality assessment and meta-analysis of randomized, controlled studies. J Am Coll Nutr 30:79–91

    Article  CAS  Google Scholar 

  2. Ascencio C, Torres N, Isoard-Acosta F, Gomez-Perez FJ, Hernandez-Pando R, Tovar AR (2004) Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. J Nutr 134:522–529

    CAS  Google Scholar 

  3. Jenkins DJ, Kendall CW, Jackson CJ, Connelly PW, Parker T, Faulkner D, Vidgen E, Cunnane SC, Leiter LA, Josse RG (2002) Effects of high- and low-isoflavone soy foods on blood lipids, oxidized LDL, homocysteine, and blood pressure in hyperlipidemic men and women. Am J Clin Nutr 76:365–372

    CAS  Google Scholar 

  4. Baba T, Ueda A, Kohno M, Fukui K, Miyazaki C, Hirotsuka M, Ishinaga M (2004) Effects of soybean beta-conglycinin on body fat ratio and serum lipid levels in healthy volunteers of female university students. J Nutr Sci Vitaminol (Tokyo) 50:26–31

    Article  CAS  Google Scholar 

  5. Rebholz CM, Reynolds K, Wofford MR, Chen J, Kelly TN, Mei H, Whelton PK, He J (2013) Effect of soybean protein on novel cardiovascular disease risk factors: a randomized controlled trial. Eur J Clin Nutr 67:58–63

    Article  CAS  Google Scholar 

  6. Harland JI, Haffner TA (2008) Systematic review, meta-analysis and regression of randomised controlled trials reporting an association between an intake of circa 25 g soya protein per day and blood cholesterol. Atherosclerosis 200:13–27

    Article  CAS  Google Scholar 

  7. Ferreira ES, Silva MA, Demonte A, Neves VA (2011) Soy beta-conglycinin (7S globulin) reduces plasma and liver cholesterol in rats fed hypercholesterolemic diet. J Med Food 14:94–100

    Article  Google Scholar 

  8. Moriyama T, Kishimoto K, Nagai K, Urade R, Ogawa T, Utsumi S, Maruyama N, Maebuchi M (2004) Soybean beta-conglycinin diet suppresses serum triglyceride levels in normal and genetically obese mice by induction of beta-oxidation, downregulation of fatty acid synthase, and inhibition of triglyceride absorption. Biosci Biotechnol Biochem 68:352–359

    Article  CAS  Google Scholar 

  9. Terpstra AH, Holmes JC, Nicolosi RJ (1991) The hypocholesterolemic effect of dietary soybean protein versus casein in hamsters fed cholesterol-free or cholesterol-enriched semipurified diets. J Nutr 121:944–947

    CAS  Google Scholar 

  10. Lovati MR, Manzoni C, Gianazza E, Arnoldi A, Kurowska E, Carroll KK, Sirtori CR (2000) Soy protein peptides regulate cholesterol homeostasis in Hep G2 cells. J Nutr 130:2543–2549

    CAS  Google Scholar 

  11. Martinez-Villaluenga C, Bringe NA, Berhow MA, de Gonzalez M (2008) Beta-conglycinin embeds active peptides that inhibit lipid accumulation in 3T3-L1 adipocytes in vitro. J Agric Food Chem 56:10533–10543

    Article  CAS  Google Scholar 

  12. Anthony MS, Clarkson TB, Hughes CL Jr, Morgan TM, Burke GL (1996) Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J Nutr 126:43–50

    CAS  Google Scholar 

  13. Crouse JR III, Morgan T, Terry JG, Ellis J, Vitolins M, Burke GL (1999) A randomized trial comparing the effect of casein with that of soy protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipoproteins. Arch Intern Med 159:2070–2076

    Article  CAS  Google Scholar 

  14. Greaves KA, Parks JS, Williams JK, Wagner JD (1999) Intact dietary soy protein, but not adding an isoflavone-rich soy extract to casein, improves plasma lipids in ovariectomized cynomolgus monkeys. J Nutr 129:1585–1592

    CAS  Google Scholar 

  15. Fukui K, Tachibana N, Fukuda Y, Takamatsu K, Sugano M (2004) Ethanol washing does not attenuate the hypocholesterolemic potential of soy protein. Nutrition 20:984–990

    Article  CAS  Google Scholar 

  16. Lichtenstein AH, Jalbert SM, Adlercreutz H, Goldin BR, Rasmussen H, Schaefer EJ, Ausman LM (2002) Lipoprotein response to diets high in soy or animal protein with and without isoflavones in moderately hypercholesterolemic subjects. Arterioscler Thromb Vasc Biol 22:1852–1858

    Article  CAS  Google Scholar 

  17. Takahashi Y, Konishi T (2011) Tofu (soybean curd) lowers serum lipid levels and modulates hepatic gene expression involved in lipogenesis primarily through its protein, not isoflavone, component in rats. J Agric Food Chem 59:8976–8984

    Article  CAS  Google Scholar 

  18. Coates JB, Medeiros JS, Thanh VH, Nielsen NC (1985) Characterization of the subunits of beta-conglycinin. Arch Biochem Biophys 243:184–194

    Article  CAS  Google Scholar 

  19. Nielsen NC, Dickinson CD, Cho TJ, Thanh VH, Scallon BJ, Fischer RL, Sims TL, Drews GN, Goldberg RB (1989) Characterization of the glycinin gene family in soybean. Plant Cell 1:313–328

    Article  CAS  Google Scholar 

  20. Zarkadas CG, Gagnon C, Poysa V, Khanizadeh S, Cober ER, Chang V, Gleddie S (2007) Protein quality and identification of the storage protein subunits of tofu and null soybean genotypes, using amino acid analysis, one- and two-dimensional gel electrophoresis, and tandem mass spectrometry. Food Res Int 40:111–128

    Article  CAS  Google Scholar 

  21. Poysa V, Woodrow L, Yu K (2006) Effect of soy protein subunit composition on tofu quality. Food Res Int 39:309–317

    Article  CAS  Google Scholar 

  22. Cai T, Chang KC (1999) Processing effect on soybean storage proteins and their relationship with tofu quality. J Agric Food Chem 47:720–727

    Article  CAS  Google Scholar 

  23. Kohno M, Hirotsuka M, Kito M, Matsuzawa Y (2006) Decreases in serum triacylglycerol and visceral fat mediated by dietary soybean beta-conglycinin. J Atheroscler Thromb 13:247–255

    Article  CAS  Google Scholar 

  24. Fassini PG, Noda RW, Ferreira ES, Silva MA, Neves VA, Demonte A (2011) Soybean glycinin improves HDL-C and suppresses the effects of rosuvastatin on hypercholesterolemic rats. Lipids Health Dis 10:165

    Article  CAS  Google Scholar 

  25. Manzoni C, Duranti M, Eberini I, Scharnag H, Marz W, Castiglioni S, Lovati MR (2003) Subcellular localization of soybean 7S globulin in HepG2 cells and LDL receptor up-regulation by its alpha′ constituent subunit. J Nutr 133:2149–2155

    CAS  Google Scholar 

  26. Duranti M, Lovati MR, Dani V, Barbiroli A, Scarafoni A, Castiglioni S, Ponzone C, Morazzoni P (2004) The alpha′ subunit from soybean 7S globulin lowers plasma lipids and upregulates liver beta-VLDL receptors in rats fed a hypercholesterolemic diet. J Nutr 134:1334–1339

    CAS  Google Scholar 

  27. Xiao CW, Mei J, Wood CM (2008) Effect of soy proteins and isoflavones on lipid metabolism and involved gene expression. Front Biosci 13:2660–2673

    Article  CAS  Google Scholar 

  28. Xiao CW (2008) Health effects of soy protein and isoflavones in humans. J Nutr 138:1244S–1249S

    CAS  Google Scholar 

  29. AACC International (2013) Approved methods of analysis, 11th edn. Method 20-20.01 determination of isoflavones in soy and selected foods containing soy by extraction, saponification, and liquid chromatography. Method 32-07.01 soluble, insoluble, and total dietary fiber in foods and food products. Method 46-16.01 crude protein—improved Kjeldahl method, copper–titanium dioxide catalyst modification. AACCI: St. Paul, MN, USA. Available at http://methods.aaccnet.org/toc.aspx

  30. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  Google Scholar 

  31. Kwon DY, Daily JW III, Kim HJ, Park S (2010) Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr Res 30:1–13

    Article  CAS  Google Scholar 

  32. Tsai TY, Chen LY, Pan TM (2012) Effect of probiotic-fermented, genetically modified soy milk on hypercholesterolemia in hamsters. J Microbiol Immunol Infect. doi:10.1016/j.jmii.2012.05.009

    Google Scholar 

  33. Lucas EA, Lightfoot SA, Hammond LJ, Devareddy L, Khalil DA, Daggy BP, Soung DY, Arjmandi BH (2003) Soy isoflavones prevent ovariectomy-induced atherosclerotic lesions in Golden Syrian hamster model of postmenopausal hyperlipidemia. Menopause 10:314–321

    Article  Google Scholar 

  34. Chiha M, Njeim M, Chedrawy EG (2012) Diabetes and coronary heart disease: a risk factor for the global epidemic. Int J Hypertens 2012: 697240. doi:10.1155/2012/697240

  35. Howard BV, Robbins DC, Sievers ML, Lee ET, Rhoades D, Devereux RB, Cowan LD, Gray RS, Welty TK, Go OT, Howard WJ (2000) LDL cholesterol as a strong predictor of coronary heart disease in diabetic individuals with insulin resistance and low LDL: the Strong Heart Study. Arterioscler Thromb Vasc Biol 20:830–835

    Article  CAS  Google Scholar 

  36. Fassini PG, Ferreira ES, Silva MA, Neves VA, Demonte A (2012) Soybean glycinin (11S) increases HDL-cholesterol in hypercholesterolemic rats. Nutr Food Sci 42:102–110

    Article  Google Scholar 

  37. Kostelac D, Rechkemmer G, Briviba K (2003) Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem 51:7632–7635

    Article  CAS  Google Scholar 

  38. Walsh BW, Schiff I, Rosner B, Greenberg L, Ravnikar V, Sacks FM (1991) Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. N Engl J Med 325:1196–1204

    Article  CAS  Google Scholar 

  39. Persson L, Henriksson P, Westerlund E, Hovatta O, Angelin B, Rudling M (2012) Endogenous estrogens lower plasma PCSK9 and LDL cholesterol but not Lp(a) or bile acid synthesis in women. Arterioscler Thromb Vasc Biol 32:810–814

    Article  CAS  Google Scholar 

  40. Windler EE, Kovanen PT, Chao YS, Brown MS, Havel RJ, Goldstein JL (1980) The estradiol-stimulated lipoprotein receptor of rat liver. A binding site that membrane mediates the uptake of rat lipoproteins containing apoproteins B and E. J Biol Chem 255:10464–10471

    CAS  Google Scholar 

  41. Gutowska I, Baranowska-Bosiacka I, Nocen I, Piotrowska K, Marchlewicz M, Wiernicki I, Chlubek D, Wiszniewska B (2012) Soy isoflavones administered pre- and postnatally may affect the ERalpha and ERbeta expression and elements’ content in bones of mature male rats. Hum Exp Toxicol 31:346–354

    Article  CAS  Google Scholar 

  42. Oliveira LP, de Jesus RP, Freire TO, Oliveira CP, Castro LA, Lyra LG (2012) Possible molecular mechanisms soy-mediated in preventing and treating nonalcoholic fatty liver disease. Nutr Hosp 27:991–998

    CAS  Google Scholar 

  43. Kim MH, Kang KS (2012) Isoflavones as a smart curer for non-alcoholic fatty liver disease and pathological adiposity via ChREBP and Wnt signaling. Prev Med 54(Suppl):S57–S63

    Article  CAS  Google Scholar 

  44. Barth CA, Scholz-Ahrens KE, de Vrese M, Hotze A (1990) Difference of plasma amino acids following casein or soy protein intake: significance for differences of serum lipid concentrations. J Nutr Sci Vitaminol (Tokyo) 36(Suppl 2):S111–S117

    Article  Google Scholar 

  45. Scholz-Ahrens KE, Hagemeister H, Unshelm J, Agergaard N, Barth CA (1990) Response of hormones modulating plasma cholesterol to dietary casein or soy protein in minipigs. J Nutr 120:1387–1392

    CAS  Google Scholar 

  46. Rosalki SB (1998) Low serum creatine kinase activity. Clin Chem 44:905

    CAS  Google Scholar 

  47. McGrowder DA, Fraser YP, Gordon L, Crawford TV, Rawlins JM (2011) Serum creatine kinase and lactate dehydrogenase activities in patients with thyroid disorders. Niger J Clin Pract 14:454–459

    Article  CAS  Google Scholar 

  48. Arjmandi BH, Birnbaum R, Goyal NV, Getlinger MJ, Juma S, Alekel L, Hasler CM, Drum ML, Hollis BW, Kukreja SC (1998) Bone-sparing effect of soy protein in ovarian hormone-deficient rats is related to its isoflavone content. Am J Clin Nutr 68:1364S–1368S

    CAS  Google Scholar 

  49. Biver E, Chopin F, Coiffier G, Brentano TF, Bouvard B, Garnero P, Cortet B (2012) Bone turnover markers for osteoporotic status assessment? A systematic review of their diagnosis value at baseline in osteoporosis. Jt Bone Spine 79:20–25

    Article  Google Scholar 

  50. Castelo-Branco C, Soveral I (2013) Phytoestrogens and bone health at different reproductive stages. Gynecol Endocrinol 29:735–743

    Article  CAS  Google Scholar 

  51. Chen JR, Zhang J, Lazarenko OP, Cao JJ, Blackburn ML, Badger TM, Ronis MJ (2013) Soy protein isolates prevent loss of bone quantity associated with obesity in rats through regulation of insulin signaling in osteoblasts. FASEB J. doi:10.1096/fj.12-226464

    Google Scholar 

  52. Hamden K, Jaouadi B, Carreau S, Aouidet A, Elfeki A (2011) Therapeutic effects of soy isoflavones on alpha-amylase activity, insulin deficiency, liver-kidney function and metabolic disorders in diabetic rats. Nat Prod Res 25:244–255

    Article  CAS  Google Scholar 

  53. Tarling CA, Woods K, Zhang R, Brastianos HC, Brayer GD, Andersen RJ, Withers SG (2008) The search for novel human pancreatic alpha-amylase inhibitors: high-throughput screening of terrestrial and marine natural product extracts. ChemBioChem 9:433–438

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Dominique Patry for doing blood biochemical analysis and Paul O’Reilly, Frances Tran, and Grace Leung for technical assistance. We would like to thank Dr. Vaino Poysa of AAFC Harrow Ontario for providing the seeds used in this study and Dr. Lorna Woodrow for providing the isoflavone and sugar analysis of the soy protein concentrates. This work was supported by Health Canada, Grains Farmers of Ontario Research fund and the partnership of Agriculture and Agri-Food Canada/Canadian Field Crops Research Alliance DIAP fund.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wu Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q., Wood, C., Gagnon, C. et al. The α′ subunit of β-conglycinin and the A1–5 subunits of glycinin are not essential for many hypolipidemic actions of dietary soy proteins in rats. Eur J Nutr 53, 1195–1207 (2014). https://doi.org/10.1007/s00394-013-0620-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0620-9

Keywords

Navigation