Skip to main content
Log in

New perspectives on vitamin D sources in Germany based on a novel mathematical bottom-up model of 25(OH)D serum concentrations

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Up-to-date knowledge about vitamin D supply and serum concentration in Germany is not sufficient. Our purpose was to compare a novel holistic bottom-up modeling of 25(OH)D concentrations with vitamin D sources such as sunlight, food and supplements for all federal states taking seasonal and geographical variations into account. The second purpose was to update and detail vitamin D supply through food in Germany.

Methods

To confirm the model of 25(OH)D concentrations, we used the population (1,763 men and 2,267 women, 18–79 years) participated in the representative German National Health Interview and Examination Survey 1998 and the integrated German Nutrition Survey.

Results

The maximum model value is 67.5 nmol/L in July and minimum model value is 29.3 nmol/L in January, while the average model value is 45.0 nmol/L. Men have a mean daily intake of 137 IU (3.42 μg) and women of 112 IU (2.79 μg). Correlation between model and actual data is 0.77 (p = 0.003).

Conclusions

A comparison of the model data with population-based values showed good agreement. None of the vitamin D sources can provide the German population with enough vitamin D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29:726–776

    Article  CAS  Google Scholar 

  2. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  CAS  Google Scholar 

  3. Melamed ML, Michos ED, Post W, Astor B (2008) 25-Hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med 168:1629–1637

    Article  Google Scholar 

  4. Chiu KC, Chu A, Go VLW, Saad MF (2004) Hypovitaminosis D is associated with insulin resistance and β cell dysfunction. Am J Clin Nutr 79:820–825

    CAS  Google Scholar 

  5. Hypponen E, Läärä E, Reunanen A, Järvelin M-R, Virtanen SM (2001) Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358:1500–1503

    Article  CAS  Google Scholar 

  6. Pittas AG, Dawson-Hughes B, Li T, Van Dam RM, Willett WC, Manson JE, Hu FB (2006) Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes Care 29:650–656

    Article  CAS  Google Scholar 

  7. Ahonen MH, Tenkanen L, Teppo L, Hakama M, Tuohimaa P (2000) Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control 11:847–852

    Article  CAS  Google Scholar 

  8. Berwick M, Armstrong BK, Ben-Porat L, Fine J, Kricker A, Eberle C, Barnhill R (2005) Sun exposure and mortality from melanoma. J Natl Cancer Inst 97:195–199

    Article  Google Scholar 

  9. Chang ET, Smedby KEM, Hjalgrim H, Porwit-MacDonald A, Roos GR, Glimelius B, Adami H-O (2005) Family history of hematopoietic malignancy and risk of lymphoma. J Natl Cancer Inst 97:1466–1474

    Article  Google Scholar 

  10. Feskanich D, Ma J, Fuchs CS, Kirkner GJ, Hankinson SE, Hollis BW, Giovannucci EL (2004) Plasma vitamin D metabolites and risk of colorectal cancer in women. Cancer Epidemiol Biomark Prev 13:1502–1508

    CAS  Google Scholar 

  11. Garland CF, Garland FC, Gorham ED, Lipkin M, Newmark H, Mohr SB, Holick MF (2006) The role of vitamin D in cancer prevention. Am J Public Health 96:252–261

    Article  Google Scholar 

  12. Giovannucci E (2006) The epidemiology of vitamin D and colorectal cancer: recent findings. Curr Opin Gastroenterol 22:24–29

    Article  CAS  Google Scholar 

  13. Gorham ED, Garland CF, Garland FC, Grant WB, Mohr SB, Lipkin M, Newmark HL, Giovannucci E, Wei M, Holick MF (2005) Vitamin D and prevention of colorectal cancer. J Steroid Biochem Mol Biol 97:179–194

    Article  CAS  Google Scholar 

  14. Holick MF (2006) Calcium plus vitamin D and the risk of colorectal cancer. New Engl J Med 354:2287–2288

    Article  CAS  Google Scholar 

  15. Luscombe CJ, Fryer AA, French ME, Liu S, Saxby MF, Jones PW, Strange RC (2001) Exposure to ultraviolet radiation: association with susceptibility and age at presentation with prostate cancer. Lancet 358:641–642

    Article  CAS  Google Scholar 

  16. Annweiler C, Schott AM, Rolland Y, Blain H, Herrmann FR, Beauchet O (2010) Dietary intake of vitamin D and cognition in older women. Neurology 75:1810–1816

    Article  CAS  Google Scholar 

  17. Cannell JJ, Hollis BW, Sorenson MB, Taft TN, Anderson JJB (2009) Athletic performance and vitamin D. Med Sci Sport Exer 41:1102–1110

    Article  Google Scholar 

  18. Cantorna MT, Zhu Y, Froicu M, Wittke A (2004) Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr 80:1717S–1720S

    CAS  Google Scholar 

  19. Zittermann A (2006) Vitamin D and disease prevention with special reference to cardiovascular disease. Prog Biophys Mol Biol 92:39–48

    Article  CAS  Google Scholar 

  20. Ponsonby A-L, McMichael A, van der Mei I (2002) Ultraviolet radiation and autoimmune disease: insights from epidemiological research. Toxicology 181–182:71–78

    Article  Google Scholar 

  21. Roux C, Bischoff-Ferrari HA, Papapoulos SE, de Papp AE, West JA, Bouillon R (2008) New insights into the role of vitamin D and calcium in osteoporosis management: an expert roundtable discussion. Curr Med Res Opin 24:1363–1370

    Article  CAS  Google Scholar 

  22. von Domarus C, Brown J, Barvencik F, Amling M, Pogoda P (2011) How much vitamin D do we need for skeletal health? Clin Orthop Relat R:1–7

    Google Scholar 

  23. Priemel M, Domarus C, Klatte TO, Kessler S, Schlie J, Meier S, Proksch N, Pastor F, Netter C, Streichert T, Püschel K, Amling M (2010) Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 25:305–312

    Article  CAS  Google Scholar 

  24. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B (2004) Positive association between 25-hydroxy vitamin d levels and bone mineral density: a population-based study of younger and older adults. Am J Med 116:634–639

    Article  CAS  Google Scholar 

  25. Hintzpeter B, Mensink GBM, Thierfelder W, Muller MJ, Scheidt-Nave C (2007) Vitamin D status and health correlates among German adults. Eur J Clin Nutr 62:1079–1089

    Article  Google Scholar 

  26. Hintzpeter B, Scheidt-Nave C, Muller MJ, Schenk L, Mensink GBM (2008) Higher prevalence of vitamin D deficiency is associated with immigrant background among children and adolescents in Germany. J Nutr 138:1482–1490

    CAS  Google Scholar 

  27. Webb AR, Kline L, Holick MF (1988) Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab 67:373–378

    Article  CAS  Google Scholar 

  28. DGE German Association for Nutrition (Deutsche Gesellschaft für Ernährung—DGE). Reference values for nutritional intake D-A-CH—vitamin D (Calciferole). Version current 2012. Internet: http://www.dge.de/modules.php?name=Content&pa=showpage&pid=4&page=12. Accessed 24 April 2012

  29. Zittermann A, Helden RV, Grant WB, Kipshoven C, Ringe JD (2009) An estimate of the survival benefit of improving vitamin D status in the adult German population. Dermatoendocrinol 1(6):300–306

    Article  CAS  Google Scholar 

  30. Zittermann A (2010) The estimated benefits of vitamin D for Germany. Mol Nutr Food Res 54:1164–1171

    CAS  Google Scholar 

  31. MRI Max Rubner-Institut (MRI)—Federal ministry of food, agriculture and consumer protection. National nutritional survey II—part 2. Version current 2008. Internet: http://www.was-esse-ich.de/uploads/media/NVSII_Abschlussbericht_Teil_2.pdf. Accessed 15 August 2011

  32. BLE Federal association of the German meat industry. Meat consumption per capita from “Federal agency for agriculture and food” (Bundesamt für Landwirtschaft und Ernährung—BLE). Version current 2006. Internet: http://www.bvdf.de/in_zahlen/tab_06/. Accessed 14 August 2011

  33. Milch&Markt German milk industry. Numbers and data of the German milk industry. Version 2008. Internet: http://www.milchindustrie.de/de/presse/branchenzahlen_aktuell/milchaktuell_zahlen_daten.html. Accessed 14 August 2011

  34. ZMP, MIV central price and market report authority (Zentrale Preis- und Marktberichtstelle–ZMP). What do we eat. Version 2002. Internet: http://www.was-wir-essen.de/abisz/speisepilze_erzeugung_entwicklung.php. Accessed 14 August 2011

  35. Chen TC, Chimeh F, Lu Z, Mathieu J, Person KS, Zhang A, Kohn N, Martinello S, Berkowitz R, Holick MF (2007) Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch Biochem Biophys 460:213–217

    Article  CAS  Google Scholar 

  36. Baraké R, Weiler H, Payette H, Gray-Donald K (2010) Vitamin D supplement consumption is required to achieve a minimal target 25-Hydroxyvitamin D concentration of ≥75 nmol/L in older people. J Nutr 140:551–556

    Article  Google Scholar 

  37. Vieth R (1999) Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 69:842–856

    CAS  Google Scholar 

  38. O’Donnell S, Cranney A, Horsley T, Weiler HA, Atkinson SA, Hanley DA, Ooi DS, Ward L, Barrowman N, Fang M, Sampson M, Tsertsvadze A, Yazdi F (2008) Efficacy of food fortification on serum 25-hydroxyvitamin D concentrations: systematic review. Am J Clin Nutr 88:1528–1534

    Article  Google Scholar 

  39. Niramitmahapanya S, Harris SS, Dawson-Hughes B (2011) Type of dietary fat is associated with the 25-Hydroxyvitamin D3 increment in response to vitamin D supplementation. J Clin Endocrinol Metab 96:3170–3174

    Article  CAS  Google Scholar 

  40. Diffey BL (2010) Modelling the seasonal variation of vitamin D due to sun exposure. Brit J Dermatol 162:1342–1348

    Article  CAS  Google Scholar 

  41. Knuschke P, Kurpiers M, Koch R, Kuhlisch W, Witte K (2004) Mean individual UV-exposures in the population. BMBF report (Federal Ministry of Education and Research—Bundesministerium für Bildung und Forschung) with the reference number 07UVB54C/3

  42. Barmettler A, Brodbeck R (2011) The time function. Version current 6 December 2010. Internet: http://lexikon.astronomie.info/zeitgleichung/. Accessed 14 August 2011

  43. VuMA Consumption and media analysis (Verbraucher- und Mediananalyse-VuMA). Basis analysis. Version 2011. Internet: http://www.vuma.de/de/downloads/berichtband.html. Accessed 14 August 2011

  44. Rigel DS, Rigel EG, Rigel AC (1999) Effects of altitude and latitude on ambient UVB radiation. J Am Acad Dermatol 40:114–116

    Article  CAS  Google Scholar 

  45. Rigel EG, Lebwohl MG, Rigel AC, Rigel DS (2003) Ultraviolet radiation in alpine skiing: magnitude of exposure and importance of regular protection. Arch Dermatol 139:60–62

    Article  Google Scholar 

  46. Khoo A-L, Koenen HJPM, Chai LYA, Sweep FCGJ, Netea MG, van der Ven AJAM, Joosten I (2012) Seasonal variation in vitamin D3 levels is paralleled by changes in the peripheral blood human T cell compartment. PLoS ONE 7:e29250

    Article  CAS  Google Scholar 

  47. Reusch J, Ackermann H, Badenhoop K (2009) Cyclic changes of vitamin D and PTH are primarily regulated by solar radiation: 5-year analysis of a German (50Å N) population. Horm Metab Res 41(402):407

    Google Scholar 

  48. Mithal A, Wahl D, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman J, El-Hajj Fuleihan G, Josse R, Lips P, Morales-Torres J, Group obotIOFCoSANW (2009) Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 20:1807–1820

    Google Scholar 

  49. Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ (2003) Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr 77:204–210

    CAS  Google Scholar 

  50. Adams JS, Clemens TL, Parrish JA, Holick MF (1982) Vitamin-D synthesis and metabolism after ultraviolet irradiation of normal and vitamin-D-deficient subjects. New Engl J Med 306:722–725

    Article  CAS  Google Scholar 

  51. Thompson GR, Lewis B, Booth CC (1966) Absorption of vitamin D3–3H in control subjects and patients with intestinal malabsorption. J Clin Investig 45:94–102

    Article  CAS  Google Scholar 

  52. Jones G (2008) Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr 88:582S–586S

    CAS  Google Scholar 

  53. Vieth R (2005) The role of vitamin D in the prevention of osteoporosis. Ann Med 37:278–285

    Article  CAS  Google Scholar 

  54. MacLaughlin J, Holick MF (1985) Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 76:1536–1538

    Article  CAS  Google Scholar 

  55. Destatis Federal Office of Statistics (Statistisches Bundesamt). Have you ever been to a tanning shop. Version current 2011. Internet: http://de.statista.com/statistik/daten/studie/175173/umfrage/nutzung-von-solarien/. Accessed 14 August 2011

  56. Stiftung-Warentest Stiftung Warentest (Leading German consumer safety group). Tanning shop—what you need to know. Version October 2007. Internet: http://www.test.de/themen/gesundheit-kosmetik/meldung/Sonnenstudios-Was-Sie-wissen-muessen-1578111-2578111/. Accessed 14 August 2011

  57. ISD ISD (Initiative of black people in Germany). German newspaper slammed for racist cover. Version 6 May 2007. Internet: http://www.spiegel.de/international/germany/0,1518,557861,00.html. Accessed 14 August 2011

  58. Biancuzzo RM, Young A, Bibuld D, Cai MH, Winter MR, Klein EK, Ameri A, Reitz R, Salameh W, Chen TC, Holick MF (2010) Fortification of orange juice with vitamin D2 or vitamin D3 is as effective as an oral supplement in maintaining vitamin D status in adults. Am J Clin Nutr 91:1621–1626

    Article  CAS  Google Scholar 

  59. Tangpricha V, Koutkia P, Rieke SM, Chen TC, Perez AA, Holick MF (2003) Fortification of orange juice with vitamin D: a novel approach for enhancing vitamin D nutritional health. Am J Clin Nutr 77:1478–1483

    CAS  Google Scholar 

  60. Burgaz A, Akesson A, Oster A, Michaëlsson K, Wolk A (2007) Associations of diet, supplement use, and ultraviolet B radiation exposure with vitamin D status in Swedish women during winter. Am J Clin Nutr 86:1399–1404

    CAS  Google Scholar 

  61. Kyriakidou-Himonas M, Aloia JF, Yeh JK (1999) Vitamin D supplementation in postmenopausal black women. J Clin Endocrinol Metab 84:3988–3990

    Article  CAS  Google Scholar 

  62. Byrne P, Freaney R, McKenna M (1995) Vitamin D supplementation in the elderly: review of safety and effectiveness of different regimes. Calcif Tissue Int 56:518–520

    Article  CAS  Google Scholar 

  63. Cashman KD, Hill TR, Lucey AJ, Taylor N, Seamans KM, Muldowney S, FitzGerald AP, Flynn A, Barnes MS, Horigan G, Bonham MP, Duffy EM, Strain JJ, Wallace JMW, Kiely M (2008) Estimation of the dietary requirement for vitamin D in healthy adults. Am J Clin Nutr 88:1535–1542

    Article  CAS  Google Scholar 

  64. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: what clinicians need to know. J Clin Endocr Metab 96:53–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Scheidt-Nave and Dr. Mensink for critical reading of the manuscript and helpful comments. The authors also thank Dr. Hintzpeter, the “Robert Koch-Institute,” the “Federal agency for agriculture and food,” the “German federal office for radiation protection,” the “German Meteorological Service Provider” and Dr. Jobst Augustin for information, data as well as helpful discussions.

Conflict of interest

The authors claim that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Amling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

394_2012_477_MOESM1_ESM.ppt

Supplementary material 1 A. Ten measuring points for mean daily ambient erythemal UV in Germany from the “German federal office for radiation protection”. The distribution of the measuring points is well suited for an interpolation of data (PPT 314 kb)

394_2012_477_MOESM2_ESM.ppt

Supplementary material 2 A. Seasonal variations of hours of daylight for the 16 German federal states. The x-axis shows months of the year, while the y-axis hours of daylight. Abbreviations: BW = Baden-Wuerttemberg, BY = Bavaria, BE = Berlin, BB = Brandenburg, HB = Bremen, HH = Hamburg, HE = Hesse, MV = Mecklenburg-Western Pomerania, NI = Lower Saxony, NW = North Rhine-Westphalia, RP = Rhineland-Palatinate, SL = Saarland, SN = Saxony, ST = Saxony-Anhalt, SH = Schleswig-Holstein, TH = Thuringia (PPT 691 kb)

394_2012_477_MOESM3_ESM.ppt

Supplementary material 3 A. Comparison of average vitamin D status of all German federal states. It becomes obvious that minimum concentrations are almost constant among all states. This is due to the fact that 25(OH)D concentrations fall to a nadir with absence of sun. Maximum concentrations however, differ as SED is correlated to federal state latitude. B. Correlation of latitude of German federal states and average vitamin D status. Abbreviations: BW = Baden-Wuerttemberg, BY = Bavaria, BE = Berlin, BB = Brandenburg, HB = Bremen, HH = Hamburg, HE = Hesse, MV = Mecklenburg-Western Pomerania, NI = Lower Saxony, NW = North Rhine-Westphalia, RP = Rhineland-Palatinate, SL = Saarland, SN = Saxony, ST = Saxony-Anhalt, SH = Schleswig-Holstein, TH = Thuringia. Statistical analysis was performed using SPSS version 18. Results were considered statistically significant when a two-tailed p value was less than 0.05. C. Comparison of the size of Germany and USA. As this model was validated for a small geographic region, it becomes obvious that this model could be easily adapted and used for bigger countries such as the USA (PPT 325 kb)

Supplementary material 4 (DOC 131 kb)

Supplementary material 5 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, J., Ignatius, A., Amling, M. et al. New perspectives on vitamin D sources in Germany based on a novel mathematical bottom-up model of 25(OH)D serum concentrations. Eur J Nutr 52, 1733–1742 (2013). https://doi.org/10.1007/s00394-012-0477-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-012-0477-3

Keywords

Navigation