Skip to main content

Advertisement

Log in

Functional foods/ingredients on dental erosion

  • Supplement
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Aimutis WR (2004) Bioactive properties of milk proteins with particular focus on anticariogenesis. J Nutr 134:989S–995S

    CAS  Google Scholar 

  2. Amaechi BT, Higham SM, Edgar WM (1998) The influence of xylitol and fluoride on dental erosion in vitro. Arch Oral Biol 43:157–161

    Article  CAS  Google Scholar 

  3. Arends J, Schuthof J, Christoffersen J (1986) Inhibition of enamel demineralization by albumin in vitro. Caries Res 20:337–340

    Article  CAS  Google Scholar 

  4. Attin T, Weiss K, Becker K, Buchalla W, Wiegand A (2005) Impact of modified acidic soft drinks on enamel erosion. Oral Dis 11:7–12

    Article  CAS  Google Scholar 

  5. Bachra BN, van Harskamp GA (1970) The effect of polyvalent metal ions on the stability of a buffer system for calcification in vitro. Calcif Tissue Res 4:359–365

    Article  CAS  Google Scholar 

  6. Barbour ME, Shellis RP, Parker DM, Allen GC, Addy M (2005) An investigation of some food-approved polymers as agents to inhibit hydroxyapatite dissolution. Eur J Oral Sci 113:457–461

    Article  CAS  Google Scholar 

  7. Barbour ME, Shellis RP, Parker DM, Allen GC, Addy M (2008) Inhibition of hydroxyapatite dissolution by whole casein: the effects of pH, protein concentration, calcium, and ionic strength. Eur J Oral Sci 116:473–478

    Article  CAS  Google Scholar 

  8. Bartlett D, Ganss C, Lussi A (2008) Basic erosive wear examination (BEWE): a new scoring system for scientific and clinical needs. Clin Oral Investig 12(Suppl 1):65–68

    Article  Google Scholar 

  9. Ben-Aryeh H, Shalev A, Szargel R, Laor A, Laufer D, Gutman D (1986) The salivary flow rate and composition of whole and parotid resting and stimulated saliva in young and old healthy subjects. Biochem Med Metabol Biol 36:260–265

    Article  CAS  Google Scholar 

  10. Besic FC (1953) Caries like enamel changes by chemical means. J Dent Res 32:830–839

    Article  CAS  Google Scholar 

  11. Brookes SJ, Shore RC, Robinson C, Wood SR, Kirkham J (2003) Copper ions inhibit the demineralisation of human enamel. Arch Oral Biol 48:25–30

    Article  CAS  Google Scholar 

  12. Brookes SJ, Robinson C, Shore RC (2004) Inhibitory effect of metal ions on acid demineralisation. Caries Res 38:401 (abstract)

    Google Scholar 

  13. Busscher HJ, Goedhart W, Ruben J, Bos R, Van der Mei CH (2000) Wettability of dental enamel by soft drinks as compared to saliva and enamel demineralisation. In: Addy M, Embery G, Edgar WM, Orchardson R (eds) Tooth wear and sensitivity. Martin Dunitz, UK, pp 197–200

    Google Scholar 

  14. Buzalaf MAR, Italiani FM, Kato MT, Martinhon CCR, Magalhaes AC (2006) Effect of iron on inhibition of acid demineralization of bovine dental enamel in vitro. Arch Oral Biol 51:844–848

    Article  CAS  Google Scholar 

  15. Cairns AM, Watson M, Creanor SL, Foye RH (2002) The pH and titratable acidity of a range of diluting drinks and their potential effect on dental erosion. J Dent 30:313–317

    Article  CAS  Google Scholar 

  16. Cavadini C, Siega-Riz AM, Popkin BM (2000) US adolescent food intake trends from 1965 to 1996. Arch Dis Child 83:18–24

    Article  CAS  Google Scholar 

  17. Christensen CM, Navazesh M (1984) Anticipatory salivary flow to the sight of different foods. Appetite 5:307–315

    Article  CAS  Google Scholar 

  18. Chunmuang S, Jitpukdeebodintra S, Chuenarrom C, Benjakul P (2007) Effect of xylitol and fluoride on enamel erosion in vitro. J Oral Sci 49:293–297

    Article  CAS  Google Scholar 

  19. Coultate TP (2002) Minerals. In: Coultate TP (ed) Food: the chemistry of its components. RSC Publishing, Royal Society of Chemistry, Cambridge, UK, pp 374–387

  20. Damodaran S (1996) Amino acids, peptides, and proteins. In: Fennema OR (ed) Food chemistry. New York, Dekker, pp 321–430

  21. Davis RE, Marshall TA, Qian F, Warren JJ, Wefel JS (2007) In vitro protection against dental erosion afforded by commercially available calcium-fortified 100 percent juices. J Am Dent Assoc 138:1593–1598

    Google Scholar 

  22. Dawes C (2003) What is the critical pH and why does a tooth dissolve in acid? J Can Dental Assoc 69:722–724

    Google Scholar 

  23. Distler W, Bronner H, Hickel R, Petschelt A (1993) Die Säurefreisetzung beim Verzehr von zuckerfreien Fruchtbonbons in der Mundhöhle in vivo. Deutsche zahnärztliche Zeitschrift 48:492–494

    Google Scholar 

  24. Dodds MW, Johnson DA, Yeh CK (2005) Health benefits of saliva: a review. J Dent 33:223–233

    Article  Google Scholar 

  25. Dreizen S, Brown LR, Daly TE, Drane JB (1977) Prevention of xerostomia-related dental caries in irradiated cancer patients. J Dent Res 56:99–104

    Article  CAS  Google Scholar 

  26. Dugmore CR, Rock WP (2003) The progression of tooth erosion in a cohort of adolescents of mixed ethnicity. Int J Pediatr Dent 13:295–303

    Article  CAS  Google Scholar 

  27. Eisenburger M, Hughes J, West NX, Shellis RP, Addy M (2001) The use of ultrasonication to study remineralisation of eroded enamel. Caries Res 35:61–66

    Article  CAS  Google Scholar 

  28. Engelen L, de Wijk RA, Prinz JF, van der Bilt A, Bosman F (2003) The relation between saliva flow after different stimulations and the perception of flavor and texture attributes in custard desserts. Physiol Behav 78:165–169

    Article  CAS  Google Scholar 

  29. Edwards M, Creanor SL, Foye RH, Gilmour WH (1999) Buffering capacities of soft drinks: the potential influence on dental erosion. J Oral Rehabil 26:923–927

    Article  CAS  Google Scholar 

  30. Featherstone JDB, Lussi A (2006) Understanding the chemistry of dental erosion. Monographs in oral science. In: Whitford GM (ed) Dental erosion: from diagnosis to therapy. Karger, vol 20, pp 66–76

  31. Ganss C, Schlechtriemen M, Klimek J (1999) Dental erosions in subjects living on a raw food diet. Caries Res 33:74–80

    Article  CAS  Google Scholar 

  32. Gleason P, Suitor C (2001) Children’s diets in the mid-1990s: Dietary intake and its relationship with school meal participation. US Department of Agriculture, Food and Nutrition Service, Office of Analysis, Nutrition and Evaluation, Alexandria, VA

  33. Granström TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol 74:277–281

    Google Scholar 

  34. Gray JA (1962) Kinetics of the dissolution of human dental enamel in acid. J Dent Res 41:633–645

    Article  CAS  Google Scholar 

  35. Grenby TH (1996) Lessening dental erosive potential by product modification. Eur J Oral Sci 104:221–228

    Article  CAS  Google Scholar 

  36. Hannig C, Hannig M, Attin T (2005) Enzymes in the acquired enamel pellicle. Eur J Oral Sci 113:2–13

    Article  CAS  Google Scholar 

  37. Hara AT, Lussi A, Zero DT (2006) Biological factors. In: Lussi A (ed) Dental erosion: from diagnosis to therapy. Monographs in oral science, Karger AG, pp 88–99

  38. Hara AT, Zero DT (2008) Analysis of the erosive potential of calcium-containing acidic beverages. Eur J Oral Sci 116:60–65

    Article  Google Scholar 

  39. Hay DI, Pinsent BRW, Schram CJ, Wagg BJ (1962) The protective effect of calcium and phosphate ions against acid erosion of dental enamel and dentine. Br Dent J 112:283–287

    Google Scholar 

  40. Heintze U, Birkhed D, Bjorn H (1983) Secretion rate and buffer effect of resting and stimulated whole saliva as a function of age and sex. Swed Dent J 7:227–238

    CAS  Google Scholar 

  41. Hemingway CA, Shellis RP, Parker DM, Addy M, Barbour ME (2008) Inhibition of hydroxyapatite dissolution by ovalbumin as a function of pH, calcium concentration, protein concentration and acid type. Caries Res 42:348–353

    Article  CAS  Google Scholar 

  42. Holt C, Wahlgren NM, Drakenberg T (1996) Ability of a b-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters. Biochem J 314:1035–1039

    CAS  Google Scholar 

  43. Hooper S, West NX, Sharif N, Smith S, North M, De Ath J, Parker DM, Roedig-Penman A, Addy M (2004) A comparison of enamel erosion by a new sports drink compared to two proprietary products: a controlled, crossover study in situ. J Dent 32:541–545

    Article  CAS  Google Scholar 

  44. Hooper S, Hughes J, Parker D, Finke M, Newcombe RG, Addy M, West N (2007) A clinical study in situ to assess the effect of a food approved polymer on the erosion potential of drinks. J Dent 35:541–546

    Article  CAS  Google Scholar 

  45. Hughes JA, West NX, Parker DM, Newcombe RG, Addy M (1999) Development and evaluation of a low erosive blackcurrant juice drink in vitro and in situ. 1. Comparison with orange juice. J Dent 27:285–289

    Article  CAS  Google Scholar 

  46. Hughes JA, West NX, Parker DM, Newcombe RG, Addy M (1999) Development and evaluation of a low erosive blackcurrant juice drink. 3. Final drink and concentrate, formulae comparisons in situ and overview of the concept. J Dent 27:345–350

    Article  CAS  Google Scholar 

  47. Ireland AJ, McGuinness N, Sherriff M (1995) An investigation into the ability of soft drinks to adhere to enamel. Caries Res 29:470–476

    Article  CAS  Google Scholar 

  48. Jaeggi T, Schaffner M, Bürgin W, Lussi A (1999) Erosionen und keilförmige Defekte bei Rekruten der Schweizer Armee. Schweiz Monatsschr Zahnmed 109:1171–1178

    Google Scholar 

  49. Jarvinen VK, Rytomaa II, Heinonen OP (1991) Risk factors in dental erosion. J Dent Res 70:942–947

    Article  CAS  Google Scholar 

  50. Jensdottir T, Bardow A, Holbrook P (2005) Properties and modification of soft drinks in relation to their erosive potential in vitro. J Dent 33:569–575

    Article  CAS  Google Scholar 

  51. Jensdottir T, Nauntofte B, Buchwald C, Hansen HS, Bardow A (2006) Effects of sucking acidic candies on saliva in unilaterally irradiated pharyngeal cancer patients. Oral Oncol 42:317–322

    Article  CAS  Google Scholar 

  52. Jensdottir T, Nauntofte B, Buchwald C, Bardow A (2007) Effects of calcium on the erosive potential of acidic candies in saliva. Caries Res 41:68–73

    Article  CAS  Google Scholar 

  53. Johansson AK, Lingström P, Birkhed D (2002) Comparison of factors potentially related to the occurrence of dental erosion in high- and low-erosion groups. Eur J Oral Sci 110:204–211

    Article  Google Scholar 

  54. Kato MT, Maria AG, Vaz LG, de Italiani FM, Sales-Peres SH, Buzalaf MA (2007) Effect of iron supplementation on the erosive potential of carbonated or decarbonated beverage. J Appl Oral Sci 15:61–64

    Article  CAS  Google Scholar 

  55. Kato MT, Maria AG, Sales-Peres SHC, Buzalaf MAR (2007) Effect of iron on the dissolution of bovine enamel powder in vitro by carbonated beverages. Arch Oral Biol 52:614–617

    Article  CAS  Google Scholar 

  56. Kato MT, Sales-Peres SH, Buzalaf MA (2007) Effect of iron on acid demineralisation of bovine enamel blocks by a soft drink. Arch Oral Biol 52:1109–1111

    Article  CAS  Google Scholar 

  57. Larsen MJ, Nyvad B (1999) Enamel erosion by some soft drinks and orange juices relative to their pH, buffering effect and contents of calcium phosphate. Caries Res 33:81–87

    Article  CAS  Google Scholar 

  58. Lee VM, Linden RW (1992) An olfactory-submandibular salivary reflex in humans. Exp Physiol 77:221–224

    CAS  Google Scholar 

  59. Lee M, Feldman M (1998) Nausea and vomiting. In: Feldman M, Scharschmidt B, Sleisenger M (eds) Sleisenger and Fordstran’s gastrointestinal and liver disease: pathophysiology, diagnosis, management. Saunders Philadelphia, 6th edn, pp 117–127

  60. Lennon AM, Pfeffer M, Buchalla W, Becker K, Lennon S, Attin T (2006) Effect of a casein/calcium phosphate-containing tooth cream and fluoride on enamel erosion in vitro. Caries Res 40:154–157

    Article  CAS  Google Scholar 

  61. Lussi A (2006) Dental erosion. From diagnosis to therapy. Monogr Oral Sci 20:6

  62. Lussi A, Schaffner M (2000) Progression of and risk factors for dental erosion and wedge-shaped defects over a 6-year period. Caries Res 34:182–187

    Article  CAS  Google Scholar 

  63. Lussi A, Hellwig E (2001) Erosive potential of oral care products. Caries Res 35:52–56

    Article  CAS  Google Scholar 

  64. Lussi A, Schaffner M, Hotz P, Suter P (1991) Dental erosion in an adult Swiss population. Commun Dent Oral Epidemiol 19:286–290

    Article  CAS  Google Scholar 

  65. Lussi A, Jaeggi T, Schärer S (1993) The influence of different factors on in vitro enamel erosion. Caries Res 27:387–393

    Article  CAS  Google Scholar 

  66. Lussi A, Jaeggi T, Jaeggi-Schärer S (1995) Prediction of the erosive potential of some beverages. Caries Res 29:349–354

    Article  CAS  Google Scholar 

  67. Lussi A, Portmann P, Burhop B (1997) Erosion on abraded dental hard tissues by acid lozenges: an in situ study. Clin Oral Investig 1:191–194

    Article  CAS  Google Scholar 

  68. Lussi A, Jaeggi T, Zero D (2004) The role of diet in the aetiology of dental erosion. Caries Res 38(Suppl 1):34–44

    Article  Google Scholar 

  69. Magalhães AC, Moraes SM, Rios D, Buzalaf MAR (2009) The effect of ion supplementation of a commercial soft drink on tooth enamel erosion. Food Additives Contaminants A 26:52–156

    Google Scholar 

  70. Mäkinen KK, Söderling E (1984) Solubility of calcium salts, enamel and hydroxyapatite in aqueous solution of simple carbohydrates. Calcif Tissue Int 36:64–71

    Article  Google Scholar 

  71. Marinho VC (2008) Evidence-based effectiveness of topical fluorides. Adv Dent Res 20:3–7

    Article  CAS  Google Scholar 

  72. Meurman JH, Frank RM (1991) Scanning electron microscopic study of the effect of salivary pellicle on enamel erosion. Caries Res 25:1–6

    Article  CAS  Google Scholar 

  73. Meurman JH, ten Cate JM (1996) Pathogenesis and modifying factors of dental erosion. Eur J Oral Sci 104:199–206

    Article  CAS  Google Scholar 

  74. Navazesh M, Mulligan RA, Kipnis V, Denny PA, Denny PC (1992) Comparison of whole saliva flow rates and mucin concentrations in healthy Caucasian young and aged adults. J Dent Res 71:1275–1278

    Article  CAS  Google Scholar 

  75. Neuhaus K, Lussi A (2009) Casein Phosphopeptid-Amorphes Calciumphosphat (CPP-ACP) und seine Wirkung auf die Zahnhartsubstanz. Schweiz Monatsschr Zahnmed 119:110–116

    Google Scholar 

  76. Nunn JH, Gordon PH, Morris AJ, Pine CM, Walker A (2003) Dental erosion—changing prevalence? A review of British National childrens’ surveys. Int J Pediatr Dent 13:98–105

    Article  CAS  Google Scholar 

  77. Ono T, Ohotowa T, Takagi Y (1994) Complexes of caseinophosphopeptide and calcium phosphate prepared from casein micelles by tryptic digestion. Biosci Biotechnol Biochem 58:1378–1380

    Google Scholar 

  78. O’Sullivan EA, Curzon MEJ (2000) A comparison of acidic dietary factors in children with and without dental erosion ASDC. J Dent Child 67:186–192

    Google Scholar 

  79. Owens BM (2007) The potential effects of pH and buffering capacity on dental erosion. Gen Dent 55:527–531

    Google Scholar 

  80. Panich M, Poolthong S (2009) The effect of casein phosphopeptide-amorphous calcium phosphate and a cola soft drink on in vitro enamel hardness. J Am Dent Assoc 140:455–460

    CAS  Google Scholar 

  81. Packer CD (2009) Cola-induced hypokalaemia: a super-sized problem. Int J Clin Pract 63:833–835

    Article  CAS  Google Scholar 

  82. Pearce EIF, Bibby BG (1966) Protein adsorption on bovine enamel. Arch Oral Biol 11:329–366

    Article  CAS  Google Scholar 

  83. Piekarz C, Ranjitkar S, Hunt D, McIntyre J (2008) An in vitro assessment of the role of Tooth Mousse in preventing wine erosion. Aust Dent J 53:22–25

    Article  CAS  Google Scholar 

  84. Percival RS, Challacombe SJ, Marsh PD (1994) Flow rates of resting whole and stimulated parotid saliva in relation to age and gender. J Dent Res 73:1416–1420

    CAS  Google Scholar 

  85. Phelan J, Rees J (2003) The erosive potential of some herbal teas. J Dent 31:241–246

    Article  Google Scholar 

  86. Rahiotos C, Vougiouklakis G (2007) Effect of a CPP-ACP agent on the demineralization and remineralization of dentine in vitro. J Dent 35:695–698

    Article  Google Scholar 

  87. Ramalingam L, Messer LB, Reynolds EC (2005) Adding casein phosphopeptide-amorphous calcium phosphate to sports drinks to eliminate in vitro erosion. Pediatr Dent 27:61–67

    CAS  Google Scholar 

  88. Rao SVC (1974) Preparation of solid solutions of calcium and iron hydroxylapatites. J Inst Chem Calcutta 46:30–31

    Google Scholar 

  89. Rees J, Loyn T, Chadwick B (2007) Pronamel and tooth mousse: an initial assessment of erosion prevention in vitro. J Dent 35:355–357

    Article  CAS  Google Scholar 

  90. Reussner GH, Coccodrilli GJR, Thiessen RJR (1975) Effects of phosphates in acid-containing beverages on tooth erosion. J Dent Res 54:365–370

    CAS  Google Scholar 

  91. Reynolds EC, Black CK, Cai F, Cross KJ, Eakins D, Huq NL (1999) Advances in enamel remineralization: casein phosphopeptide-amorphous calcium phosphate. J Clin Dent 10:86–88

    Google Scholar 

  92. Rios D, Honório HM, Magalhães AC, Wiegand A, de Andrade Moreira Machado MA, Buzalaf MA (2009) Light cola drink is less erosive than the regular one: an in situ/ex vivo study. J Dent 37:163–166

  93. Rytomaa I, Jarvinen V, Kanerva R, Heinonen OP (1998) Bulimia and tooth erosion. Acta Odontol Scand 56:36–40

    Article  CAS  Google Scholar 

  94. Smith BG, Robb ND (1989) Dental erosion in patients with chronic alcoholism. J Dent 17:219–221

    Article  CAS  Google Scholar 

  95. Sorvari R, Kiviranta I, Luoma H (1988) Erosive effect of sport drink mixture with and without addition of fluoride and magnesium on the molar teeth of rats. Scand J Dent Res 96:226–231

    CAS  Google Scholar 

  96. Ten Cate JM (2004) Fluorides in caries prevention and control: empiricism or science. Caries Res 38:254–257

    Article  Google Scholar 

  97. Ten Cate JM, Imfeld T (1996) Dental erosion, summary. Eur J Oral Sci 104:241–244

    Article  Google Scholar 

  98. Torell P (1988) Iron and dental caries. Swed Dent J 12:113–124

    CAS  Google Scholar 

  99. Wang X, Megert B, Hellwig E, Neuhaus KW, Lussi A (2011) Preventing erosion with novel agents. J Dent 39(2):163–170

    Article  CAS  Google Scholar 

  100. West NX, Hughes JA, Parker DM, Newcombe RG, Addy M (1999) Development and evaluation of a low erosive blackcurrant juice drink 2. Comparison with a conventional blackcurrant juice drink and orange juice. J Dent 27:341–344

    Article  CAS  Google Scholar 

  101. Wynn RL, Meiller TF (2001) Drugs and dry mouth. Gen Dent 49:10–14

    CAS  Google Scholar 

  102. Zero DT, Lussi A (2006). Extrinsic causes of erosion. Behavioral factors. In: Lussi A (ed) Dental erosion: from diagnosis to therapy. Monographs in oral science. Karger, vol 20, pp 100–106

Download references

Acknowledgments

This publication was commissioned by the Functional Foods Task Force of the European branch of the International Life Sciences Institute (ILSI Europe). Industry members of the task force are Abbott Nutrition, Barilla G. & R. Fratelli, BASF, Bionov, Biosearch Life, Cargill, Chiquita Brands International, Coca-Cola Europe, Danone, Dow Europe, DSM, DuPont Nutrition & Health, Institut Mérieux, International Nutrition Company, Kellogg Europe, Kraft Foods Europe, Mars, Martek Biosciences Corporation, McNeil Nutritionals, Naturex, Nestlé, PepsiCo International, Pfizer Consumer Healthcare, Red Bull, Rudolf Wild, Schwabegroup, Royal FrieslandCampina, Soremartec Italia—Ferrero Group, Südzucker/BENEO Group, Tate & Lyle Ingredients, Tereos-Syral, Unilever and Yakult Europe. This publication was coordinated by Dr. Alessandro Chiodini, Scientific Project Manager at ILSI Europe. For further information about ILSI Europe, please email info@ilsieurope.be or call +32 2 771 00 14. The opinions expressed herein and the conclusions of this publication are those of the authors and do not necessarily represent the views of ILSI Europe nor those of its member companies.

Declaration of interest

X. Wang and A. Lussi received a honorarium from ILSI Europe for their participation in this publication and reimbursement of their travel and accommodation costs for attending the related meetings.

Author information

Authors and Affiliations

Authors

Additional information

Please direct all correspondence to: ILSI Europe a.i.s.b.l, Avenue E. Mounier 83, Box 6, 1200 Brussels, Belgium. E-mail: publications@ilsieurope.be

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Lussi, A. Functional foods/ingredients on dental erosion. Eur J Nutr 51 (Suppl 2), 39–48 (2012). https://doi.org/10.1007/s00394-012-0326-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-012-0326-4

Navigation