Skip to main content

Advertisement

Log in

Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Although carnitine is best known for its role in the import of long-chain fatty acids (acyl groups) into the mitochondrial matrix for subsequent β-oxidation, carnitine is also necessary for the efflux of acyl groups out of the mitochondria. Since intracellular accumulation of acyl-CoA derivatives has been implicated in the development of insulin resistance, carnitine supplementation has gained attention as a tool for the treatment of insulin resistance. More recent studies even point toward a causative role for carnitine insufficiency in developing insulin resistance during states of chronic metabolic stress, such as obesity, which can be reversed by carnitine supplementation.

Methods

The present review provides an overview about data from both animal and human studies reporting effects of either carnitine supplementation or carnitine deficiency on parameters of glucose homeostasis and insulin sensitivity in order to establish the less well-recognized role of carnitine in regulating glucose homeostasis.

Results

Carnitine supplementation studies in both humans and animals demonstrate an improvement of glucose tolerance, in particular during insulin-resistant states. In contrast, less consistent results are available from animal studies investigating the association between carnitine deficiency and glucose intolerance. The majority of studies dealing with this question could either find no association or even reported that carnitine deficiency lowers blood glucose and improves insulin sensitivity.

Conclusions

In view of the abovementioned beneficial effect of carnitine supplementation on glucose tolerance during insulin-resistant states, carnitine supplementation might be an effective tool for improvement of glucose utilization in obese type 2 diabetic patients. However, further studies are necessary to explain the conflicting observations from studies dealing with carnitine deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rebouche CJ, Seim H (1998) Carnitine metabolism and its regulation in microorganisms and mammals. Annu Rev Nutr 18:39–61

    CAS  Google Scholar 

  2. Rebouche CJ, Bosch EP, Chenard CA, Schabold KJ, Nelson SE (1989) Utilization of dietary precursors for carnitine synthesis in human adults. J Nutr 119:1907–1913

    CAS  Google Scholar 

  3. Lombard KA, Olson AL, Nelson SE, Rebouche CJ (1989) Carnitine status of lactoovovegetarians and strict vegetarian adults and children. Am J Clin Nutr 50:301–306

    CAS  Google Scholar 

  4. Rebouche CJ (1992) Carnitine function and requirements during the life cycle. FASEB J 6:3379–3386

    CAS  Google Scholar 

  5. Vaz FM, Wanders RJ (2002) Carnitine biosynthesis in mammals. Biochem J 361:417–429

    CAS  Google Scholar 

  6. Davis AT (1999) Alterations in carnitine biosynthetic enzyme activities in carnitine deficient and carnitine supplemented rats. Experimental Biology’99, Washington, DC (Program addendum, abstract LB208)

  7. Rebouche CJ, Chenard CA (1991) Metabolic fate of dietary carnitine in human adults: identification and quantification of urinary and fecal metabolites. J Nutr 121:539–546

    CAS  Google Scholar 

  8. Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, Sai Y, Tsuji A (1998) Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 273:20378–20382

    CAS  Google Scholar 

  9. Tamai I, Ohashi R, Nezu JI, Sai Y, Kobayashi D, Oku A, Shimane M, Tsuji A (2000) Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem 275:40064–40072

    CAS  Google Scholar 

  10. Engel AG, Rebouche CJ, Wilson DM, Glasgow AM, Romshe CA, Cruse RP (1981) Primary systemic carnitine deficiency. II. Renal handling of carnitine. Neurology 31:819–825

    CAS  Google Scholar 

  11. Harper P, Elwin CE, Cederblad G (1988) Pharmacokinetics of intravenous and oral bolus doses of l-carnitine in healthy subjects. Eur J Clin Pharmacol 35:555–562

    CAS  Google Scholar 

  12. Sahajwalla CG, Helton ED, Purich ED, Hoppel CL, Cabana BE (1995) Multiple-dose pharmacokinetics and bioequivalence of l-carnitine 330-mg tablet versus 1-g chewable tablet versus enteral solution in healthy adult male volunteers. J Pharm Sci 84:627–633

    CAS  Google Scholar 

  13. Scaglia F, Wang Y, Longo N (1999) Functional characterization of the carnitine transporter defective in primary carnitine deficiency. Arch Biochem Biophys 364:99–106

    CAS  Google Scholar 

  14. Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochim Biophys Acta 1486:1–17

    CAS  Google Scholar 

  15. Mingorance C, Rodríguez-Rodríguez R, Justo ML, Alvarez de Sotomayor M, Herrera MD (2011) Critical update for the clinical use of l-carnitine analogs in cardiometabolic disorders. Vasc Health Risk Manag 7:169–176

    CAS  Google Scholar 

  16. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB, Lopaschuk GD, Muoio DM (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56

    CAS  Google Scholar 

  17. An J, Muoio DM, Shiota M, Fujimoto Y, Cline GW, Shulman GI, Koves TR, Stevens R, Millington D, Newgard CB (2004) Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat Med 10:268–274

    CAS  Google Scholar 

  18. Noland RC, Koves TR, Seiler SE, Lum H, Lust RM, Ilkayeva O, Stevens RD, Hegardt FG, Muoio DM (2009) Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem 284:22840–22852

    CAS  Google Scholar 

  19. Derosa G, Maffioli P, Ferrari I, D’Angelo A, Fogari E, Palumbo I, Randazzo S, Cicero AF (2010) Orlistat and l-carnitine compared to orlistat alone on insulin resistance in obese diabetic patients. Endocr J 57:777–786

    CAS  Google Scholar 

  20. Derosa G, Maffioli P, Salvadeo SA, Ferrari I, Gravina A, Mereu R, D’Angelo A, Palumbo I, Randazzo S, Cicero AF (2010) Sibutramine and l-carnitine compared to sibutramine alone on insulin resistance in diabetic patients. Intern Med 49:1717–1725

    Google Scholar 

  21. Galloway SD, Craig TP, Cleland SJ (2011) Effects of oral l-carnitine supplementation on insulin sensitivity indices in response to glucose feeding in lean and overweight/obese males. Amino Acids 41:507–515

    CAS  Google Scholar 

  22. Bloomer RJ, Fisher-Wellman KH, Tucker PS (2009) Effect of oral acetyl l-carnitine arginate on resting and postprandial blood biomarkers in pre-diabetics. Nutr Metab (Lond) 6:25

    Google Scholar 

  23. Liang Y, Yanbing L, Shan J, Yu B, Ho Z (1998) The effects of oral l-carnitine treatment on blood lipid metabolism and the body fat content in the diabetic patient. Asia Pac J Clin Nutr 7:192–195

    Google Scholar 

  24. Bowyer BA, Fleming CR, Haymond MW, Miles JM (1989) l-Carnitine: effect of intravenous administration on fuel homeostasis in normal subjects and home-parenteral-nutrition patients with low plasma carnitine concentrations. Am J Clin Nutr 49:618–623

    CAS  Google Scholar 

  25. González-Ortiz M, Hernández-González SO, Hernández-Salazar E, Martínez-Abundis E (2008) Effect of oral l-carnitine administration on insulin sensitivity and lipid profile in type 2 diabetes mellitus patients. Ann Nutr Metab 52:335–338

    Google Scholar 

  26. Malaguarnera M, Gargante MP, Russo C, Antic T, Vacante M, Malaguarnera M, Avitabile T, Li Volti G, Galvano F (2010) l-Carnitine supplementation to diet: a new tool in treatment of nonalcoholic steatohepatitis—a randomized and controlled clinical trial. Am J Gastroenterol 105:1338–1345

    CAS  Google Scholar 

  27. Mingrone G, Greco AV, Capristo E, Benedetti G, Giancaterini A, De Gaetano A, Gasbarrini G (1999) l-Carnitine improves glucose disposal in type 2 diabetic patients. J Am Coll Nutr 18:77–82

    CAS  Google Scholar 

  28. De Gaetano A, Mingrone G, Castagneto M, Calvani M (1999) Carnitine increases glucose disposal in humans. J Am Coll Nutr 18:289–295

    Google Scholar 

  29. Angelini A, Imparato L, Landi C, Porfido FA, Ciarimboli M, Marro A (1993) Variation in levels of glycaemia and insulin after infusion of glucose solutions with or without added l-carnitine. Drugs Exp Clin Res 19:219–222

    CAS  Google Scholar 

  30. Negro P, Gossetti F, La Pinta M, Mariani P, Carboni M (1994) The effect of l-carnitine, administered through intravenous infusion of glucose, on both glucose and insulin levels in healthy subjects. Drugs Exp Clin Res 20:257–262

    CAS  Google Scholar 

  31. Rahbar AR, Shakerhosseini R, Saadat N, Taleban F, Pordal A, Gollestan B (2005) Effect of l-carnitine on plasma glycemic and lipidemic profile in patients with type 2 diabetes mellitus. Eur J Clin Nutr 59:592–596

    CAS  Google Scholar 

  32. Molfino A, Cascino A, Conte C, Ramaccini C, Rossi Fanelli F, Laviano A (2010) Caloric restriction and l-carnitine administration improves insulin sensitivity in patients with impaired glucose metabolism. JPEN J Parenter Enteral Nutr 34:295–299

    CAS  Google Scholar 

  33. Derosa G, Cicero AF, Gaddi A, Mugellini A, Ciccarelli L, Fogari R (2003) The effect of l-carnitine on plasma lipoprotein(a) levels in hypercholesterolemic patients with type 2 diabetes mellitus. Clin Ther 25:1429–1439

    CAS  Google Scholar 

  34. Paulson DJ, Schmidt MJ, Traxler JS, Ramacci MT, Shug AL (1984) Improvement of myocardial function in diabetic rats after treatment with l-carnitine. Metabolism 33:358–363

    CAS  Google Scholar 

  35. Power RA, Hulver MW, Zhang JY, Dubois J, Marchand RM, Ilkayeva O, Muoio DM, Mynatt RL (2007) Carnitine revisited: potential use as adjunctive treatment in diabetes. Diabetologia 50:824–832

    CAS  Google Scholar 

  36. Dai T, Abou-Rjaily GA, Al-Share’ QY, Yang Y, Fernström MA, Deangelis AM, Lee AD, Sweetman L, Amato A, Pasquali M, Lopaschuk GD, Erickson SK, Najjar SM (2004) Interaction between altered insulin and lipid metabolism in CEACAM1-inactive transgenic mice. J Biol Chem 279:45155–45161

    CAS  Google Scholar 

  37. Rodrigues B, Xiang H, McNeill JH (1988) Effect of l-carnitine treatment on lipid metabolism and cardiac performance in chronically diabetic rats. Diabetes 37:1358–1364

    CAS  Google Scholar 

  38. Mingorance C, Gonzalez del Pozo M, Dolores Herrera M, Alvarez de Sotomayor M (2009) Oral supplementation of propionyl-l-carnitine reduces body weight and hyperinsulinaemia in obese Zucker rats. Br J Nutr 102:1145–1153

    CAS  Google Scholar 

  39. Rajasekar P, Kaviarasan S, Anuradha CV (2005) l-Carnitine administration prevents oxidative stress in high fructose-fed insulin resistant rats. Diabetol Croat 1:21–28

    Google Scholar 

  40. Rajasekar P, Anuradha CV (2007) l-Carnitine inhibits protein glycation in vitro and in vivo: evidence for a role in diabetic management. Acta Diabetol 44:83–90

    CAS  Google Scholar 

  41. Rajasekar P, Viswanathan P, Anuradha CV (2008) Renoprotective action of l-carnitine in fructose-induced metabolic syndrome. Diabetes Obes Metab 10:171–180

    CAS  Google Scholar 

  42. Yoshikawa Y, Ueda E, Sakurai H, Kojima Y (2003) Anti-diabetes effect of Zn(II)/carnitine complex by oral administration. Chem Pharm Bull (Tokyo) 51:230–231

    CAS  Google Scholar 

  43. Broderick TL, Quinney HA, Lopaschuk GD (1992) Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart. J Biol Chem 267:3758–3763

    CAS  Google Scholar 

  44. Broderick TL, Quinney HA, Barker CC, Lopaschuk GD (1993) Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Circulation 87:972–981

    CAS  Google Scholar 

  45. Broderick TL, Quinney HA, Lopaschuk GD (1995) l-Carnitine increases glucose metabolism and mechanical function following ischaemia in diabetic rat heart. Cardiovasc Res 29:373–378

    CAS  Google Scholar 

  46. Broderick TL, Panagakis G, DiDomenico D, Gamble J, Lopaschuk GD, Shug AL, Paulson DJ (1995) l-Carnitine improvement of cardiac function is associated with a stimulation in glucose but not fatty acid metabolism in carnitine-deficient hearts. Cardiovasc Res 30:815–820

    CAS  Google Scholar 

  47. Schönekess BO, Allard MF, Lopaschuk GD (1995) Propionyl l-carnitine improvement of hypertrophied heart function is accompanied by an increase in carbohydrate oxidation. Circ Res 77:726–734

    Google Scholar 

  48. Schönekess BO, Allard MF, Lopaschuk GD (1995) Propionyl l-carnitine improvement of hypertrophied rat heart function is associated with an increase in cardiac efficiency. Eur J Pharmacol 286:155–166

    Google Scholar 

  49. Broderick TL, Driedzic W, Paulson DJ (2000) Propionyl-l-carnitine effects on postischemic recovery of heart function and substrate oxidation in the diabetic rat. Mol Cell Biochem 206:151–157

    CAS  Google Scholar 

  50. Broderick TL, Haloftis G, Paulson DJ (1996) l-Propionylcarnitine enhancement of substrate oxidation and mitochondrial respiration in the diabetic rat heart. J Mol Cell Cardiol 28:331–340

    CAS  Google Scholar 

  51. Broderick TL (2008) ATP production and TCA activity are stimulated by propionyl-l-carnitine in the diabetic rat heart. Drugs R D 9:83–91

    CAS  Google Scholar 

  52. Felix C, Gillis M, Driedzic WR, Paulson DJ, Broderick TL (2001) Effects of propionyl-l-carnitine on isolated mitochondrial function in the reperfused diabetic rat heart. Diabetes Res Clin Pract 53:17–24

    CAS  Google Scholar 

  53. Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:413–459

    CAS  Google Scholar 

  54. Wall SR, Lopaschuk GD (1989) Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats. Biochim Biophys Acta 1006:97–103

    CAS  Google Scholar 

  55. Chatham JC, Forder JR (1997) Relationship between cardiac function and substrate oxidation in hearts of diabetic rats. Am J Physiol 273:H52–H58

    CAS  Google Scholar 

  56. Nicholl TA, Lopaschuk GD, McNeill JH (1991) Effects of free fatty acids and dichloroacetate on isolated working diabetic rat heart. Am J Physiol 261:H1053–H1059

    CAS  Google Scholar 

  57. Hotta K, Kuwajima M, Ono A, Nakajima H, Horikawa Y, Miyagawa J, Namba M, Hanafusa T, Horiuchi M, Nikaido H, Hayakawa J, Saheki T, Kono N, Noguchi T, Matsuzawa Y (1996) Disordered expression of glycolytic and gluconeogenic liver enzymes of juvenile visceral steatosis mice with systemic carnitine deficiency. Diabetes Res Clin Pract 32:117–123

    CAS  Google Scholar 

  58. Ringseis R, Mooren FC, Keller J, Couturier A, Wen G, Hirche F, Stangl GI, Eder K, Krüger K (2011) Regular endurance exercise improves the diminished hepatic carnitine status in mice fed a high fat diet. Mol Nutr Food Res 55:S193–S202

    CAS  Google Scholar 

  59. Cuturic M, Abramson RK, Moran RR, Hardin JW (2011) Carnitine and metabolic correlates in hospitalized psychiatric patients: a follow-through report. J Psychiatr Pract 17:35–40

    Google Scholar 

  60. Ushikai M, Horiuchi M, Kobayashi K, Matuda S, Inui A, Takeuchi T, Saheki T (2011) Induction of PDK4 in the heart muscle of JVS mice, an animal model of systemic carnitine deficiency, does not appear to reduce glucose utilization by the heart. Mol Genet Metab 102:349–355

    CAS  Google Scholar 

  61. Nakajima H, Kodo N, Inoue F, Kizaki Z, Nukina S, Kinugasa A, Sawada T (1996) Pivalate affects carnitine status but causes no severe metabolic changes in rat liver. J Nutr 126:1683–1687

    CAS  Google Scholar 

  62. Broderick TL, Christos SC, Wolf BA, DiDomenico D, Shug AL, Paulson DJ (1995) Fatty acid oxidation and cardiac function in the sodium pivalate model of secondary carnitine deficiency. Metabolism 44:499–505

    CAS  Google Scholar 

  63. Liepinsh E, Vilskersts R, Skapare E, Svalbe B, Kuka J, Cirule H, Pugovics O, Kalvinsh I, Dambrova M (2008) Mildronate decreases carnitine availability and up-regulates glucose uptake and related gene expression in the mouse heart. Life Sci 83:613–619

    CAS  Google Scholar 

  64. Liepinsh E, Vilskersts R, Zvejniece L, Svalbe B, Skapare E, Kuka J, Cirule H, Grinberga S, Kalvinsh I, Dambrova M (2009) Protective effects of mildronate in an experimental model of type 2 diabetes in Goto-Kakizaki rats. Br J Pharmacol 157:1549–1556

    CAS  Google Scholar 

  65. Liepinsh E, Skapare E, Svalbe B, Makrecka M, Cirule H, Dambrova M (2011) Anti-diabetic effects of mildronate alone or in combination with metformin in obese Zucker rats. Eur J Pharmacol 658:277–283

    CAS  Google Scholar 

  66. Krähenbühl S, Mang G, Kupferschmidt H, Meier PJ, Krause M (1995) Plasma and hepatic carnitine and coenzyme A pools in a patient with fatal, valproate induced hepatotoxicity. Gut 37:140–143

    Google Scholar 

  67. Lheureux PE, Penaloza A, Zahir S, Gris M (2005) Science review: carnitine in the treatment of valproic acid-induced toxicity—what is the evidence? Crit Care 9:431–440

    Google Scholar 

  68. Horiuchi M, Kobayashi K, Yamaguchi S, Shimizu N, Koizumi T, Nikaido H, Hayakawa J, Kuwajima M, Saheki T (1994) Primary defect of juvenile visceral steatosis (jvs) mouse with systemic carnitine deficiency is probably in renal carnitine transport system. Biochim Biophys Acta 1226:25–30

    CAS  Google Scholar 

  69. Holme E, Greter J, Jacobson CE, Lindstedt S, Nordin I, Kristiansson B, Jodal U (1989) Carnitine deficiency induced by pivampicillin and pivmecillinam therapy. Lancet 2:469–473

    CAS  Google Scholar 

  70. Luci S, Geissler S, König B, Koch A, Stangl GI, Hirche F, Eder K (2006) PPARalpha agonists up-regulate organic cation transporters in rat liver cells. Biochem Biophys Res Commun 350:704–708

    CAS  Google Scholar 

  71. Van Vlies N, Ferdinandusse S, Turkenburg M, Wanders RJ, Vaz FM (2007) PPAR alpha-activation results in enhanced carnitine biosynthesis and OCTN2-mediated hepatic carnitine accumulation. Biochim Biophys Acta 1767:1134–1142

    Google Scholar 

  72. Koch A, König B, Stangl GI, Eder K (2008) PPAR alpha mediates transcriptional upregulation of novel organic cation transporters-2 and -3 and enzymes involved in hepatic carnitine synthesis. Exp Biol Med (Maywood) 233:356–365

    CAS  Google Scholar 

  73. Ringseis R, Eder K (2009) Influence of pharmacological PPARα activators on carnitine homeostasis in proliferating and non-proliferating species. Pharmacol Res 60:179–184

    CAS  Google Scholar 

  74. Ringseis R, Wege N, Wen G, Rauer C, Hirche F, Kluge H, Eder K (2009) Carnitine synthesis and uptake into cells are stimulated by fasting in pigs as a model of nonproliferating species. J Nutr Biochem 20:840–847

    CAS  Google Scholar 

  75. Wen G, Ringseis R, Eder K (2010) Mouse OCTN2 is directly regulated by peroxisome proliferator-activated receptor α (PPARα) via a PPRE located in the first intron. Biochem Pharmacol 79:768–776

    CAS  Google Scholar 

  76. Wen G, Kühne H, Rauer C, Ringseis R, Eder K (2011) Mouse γ-butyrobetaine dioxygenase is regulated by peroxisome proliferator-activated receptor α through a PPRE located in the proximal promoter. Biochem Pharmacol 82:175–183

    CAS  Google Scholar 

  77. Dambrova M, Liepinsh E, Kalvinsh I (2002) Mildronate: cardioprotective action through carnitine-lowering effect. Trends Cardiovasc Med 12:275–279

    CAS  Google Scholar 

  78. Asaka N, Muranaka Y, Kirimoto T, Miyake H (1998) Cardioprotective profile of MET-88, an inhibitor of carnitine synthesis, and insulin during hypoxia in isolated perfused rat hearts. Fundam Clin Pharmacol 12:158–163

    CAS  Google Scholar 

  79. Spaniol M, Kaufmann P, Beier K, Wüthrich J, Török M, Scharnagl H, März W, Krähenbühl S (2003) Mechanisms of liver steatosis in rats with systemic carnitine deficiency due to treatment with trimethylhydraziniumpropionate. J Lipid Res 44:144–153

    CAS  Google Scholar 

  80. Kuka J, Vilskersts R, Cirule H, Makrecka M, Pugovics O, Kalvinsh I, Dambrova M, Liepinsh E (2011) The cardioprotective effect of mildronate is diminished after co-treatment with l-carnitine. J Cardiovasc Pharmacol Ther. doi:10.1177/1074248411419502

  81. Borum PR, Broquist HP (1977) Lysine deficiency and carnitine in male and female rats. J Nutr 107:1209–1215

    CAS  Google Scholar 

  82. Cave MC, Hurt RT, Frazier TH, Matheson PJ, Garrison RN, McClain CJ, McClave SA (2008) Obesity, inflammation, and the potential application of pharmaconutrition. Nutr Clin Pract 23:16–34

    Google Scholar 

  83. Pregant P, Kaiser E, Schernthaner G (1993) No effect of insulin treatment or glycemic improvement on plasma carnitine levels in type 2 diabetic patients. Clin Investig 71:610–612

    CAS  Google Scholar 

  84. Okuda Y, Kawai K, Murayama Y, Yamashita K (1987) Postprandial changes in plasma ketone body and carnitine levels in normal and non-insulin-dependent diabetic subjects. Endocrinol Jpn 34:415–422

    CAS  Google Scholar 

  85. De Palo E, Gatti R, Sicolo N, Padovan D, Vettor R, Federspil G (1981) Plasma and urine free l-carnitine in human diabetes mellitus. Acta Diabetol Lat 18:91–95

    Google Scholar 

  86. Winter SC, Simon M, Zorn EM, Szabo-Aczel S, Vance WH, O’Hara T, Higashi L (1989) Relative carnitine insufficiency in children with type I diabetes mellitus. Am J Dis Child 143:1337–1339

    CAS  Google Scholar 

  87. Poorabbas A, Fallah F, Bagdadchi J, Mahdavi R, Aliasgarzadeh A, Asadi Y, Koushavar H, Vahed Jabbari M (2007) Determination of free l-carnitine levels in type II diabetic women with and without complications. Eur J Clin Nutr 61:892–895

    CAS  Google Scholar 

  88. Tamamoğullari N, Siliğ Y, Içağasioğlu S, Atalay A (1999) Carnitine deficiency in diabetes mellitus complications. J Diabetes Complicat 13:251–253

    Google Scholar 

  89. Pregant P, Schernthaner G, Legenstein E, Lienhart L, Bruck S, Schnack C, Kaiser E (1991) Decreased plasma carnitine in type I diabetes mellitus. Klin Wochenschr 69:511–516

    CAS  Google Scholar 

  90. Soltész G, Melegh B, Sándor A (1983) The relationship between carnitine and ketone body levels in diabetic children. Acta Paediatr Scand 72:511–515

    Google Scholar 

  91. McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244:1–14

    CAS  Google Scholar 

  92. Steiber A, Kerner J, Hoppel CL (2004) Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med 25:455–473

    CAS  Google Scholar 

  93. Uziel G, Garavaglia B, Di Donato S (1988) Carnitine stimulation of pyruvate dehydrogenase complex (PDHC) in isolated human skeletal muscle mitochondria. Muscle Nerve 11:720–724

    CAS  Google Scholar 

  94. Lysiak W, Lilly K, DiLisa F, Toth PP, Bieber LL (1988) Quantitation of the effect of l-carnitine on the levels of acid-soluble short-chain acyl-CoA and CoASH in rat heart and liver mitochondria. J Biol Chem 263:1151–1156

    CAS  Google Scholar 

  95. Ramsay RR, Zammit VA (2004) Carnitine acyltransferases and their influence on CoA pools in health and disease. Mol Aspects Med 25:475–493

    CAS  Google Scholar 

  96. Giancaterini A, De Gaetano A, Mingrone G, Gniuli D, Liverani E, Capristo E, Greco AV (2000) Acetyl-l-carnitine infusion increases glucose disposal in type 2 diabetic patients. Metabolism 49:704–708

    CAS  Google Scholar 

  97. Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL (2006) An acute increase in skeletal muscle carnitine content alters fuel metabolism in resting human skeletal muscle. J Clin Endocrinol Metab 91:5013–5018

    CAS  Google Scholar 

  98. Wyss V, Ganzit GP, Rienzi A (1990) Effects of l-carnitine administration on VO2max and the aerobic-anaerobic threshold in normoxia and acute hypoxia. Eur J Appl Physiol Occup Physiol 60:1–6

    CAS  Google Scholar 

  99. Ferrannini E, Buzzigoli G, Bevilacqua S, Boni C, Del Chiaro D, Oleggini M, Brandi L, Maccari F (1988) Interaction of carnitine with insulin-stimulated glucose metabolism in humans. Am J Physiol 255:E946–E952

    CAS  Google Scholar 

  100. Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL (2005) Insulin stimulates l-carnitine accumulation in human skeletal muscle. FASEB J 20:377–379

    Google Scholar 

  101. Clausen T (2003) Na+–K+ pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324

    CAS  Google Scholar 

  102. Ruggenenti P, Cattaneo D, Loriga G, Ledda F, Motterlini N, Gherardi G, Orisio S, Remuzzi G (2009) Ameliorating hypertension and insulin resistance in subjects at increased cardiovascular risk: effects of acetyl-l-carnitine therapy. Hypertension 54:567–574

    CAS  Google Scholar 

  103. Zhou YP, Ling ZC, Grill VE (1996) Inhibitory effects of fatty acids on glucose-regulated B-cell function: association with increased islet triglyceride stores and altered effect of fatty acid oxidation on glucose metabolism. Metabolism 45:981–986

    CAS  Google Scholar 

  104. Keller K, Ringseis R, Priebe S, Guthke R, Kluge H, Eder K (2011) Transcript profiling in the liver of piglets fed l-carnitine. Nutr Metab (Lond) 8:76

    Google Scholar 

  105. Rajasekar P, Anuradha CV (2007) Fructose-induced hepatic gluconeogenesis: effect of l-carnitine. Life Sci 80:1176–1183

    CAS  Google Scholar 

  106. Proulx F, Lacroix J, Qureshi IA, Nadeau D, Gauthier M, Lambert M (1997) Acquired carnitine abnormalities in critically ill children. Eur J Pediatr 156:864–869

    CAS  Google Scholar 

  107. Newsholme P, Brennan L, Rubi B, Maechler P (2005) New insights into amino acid metabolism, beta-cell function and diabetes. Clin Sci (Lond) 108:185–194

    CAS  Google Scholar 

  108. Heo YR, Kang CW, Cha YS (2001) l-Carnitine changes the levels of insulin-like growth factors (IGFs) and IGF binding proteins in streptozotocin-induced diabetic rat. J Nutr Sci Vitaminol (Tokyo) 47:329–334

    CAS  Google Scholar 

  109. Keller J, Ringseis R, Priebe S, Guthke R, Kluge H, Eder K (2011) Dietary l-carnitine alters gene expression in skeletal muscle of piglets. Mol Nutr Food Res 55:419–429

    CAS  Google Scholar 

  110. Kita K, Kato S, Amanyaman M, Okumura J, Yokota H (2002) Dietary l-carnitine increases plasma insulin-like growth factor-I concentration in chicks fed a diet with adequate dietary protein level. Br Poult Sci 43:117–121

    CAS  Google Scholar 

  111. Doberenz J, Birkenfeld C, Kluge H, Eder K (2006) Effects of l-carnitine supplementation in pregnant sows on plasma concentrations of insulin-like growth factors, various hormones and metabolites and chorion characteristics. J Anim Physiol Anim Nutr 90:487–499

    CAS  Google Scholar 

  112. Di Marzio L, Moretti S, D’Alò S, Zazzeroni F, Marcellini S, Smacchia C, Alesse E, Cifone MG, De Simone C (1999) Acetyl-l-carnitine administration increases insulin-like growth factor 1 levels in asymptomatic HIV-1-infected subjects: correlation with its suppressive effect on lymphocyte apoptosis and ceramide generation. Clin Immunol 92:103–110

    CAS  Google Scholar 

  113. Musser RE, Goodband RD, Tokach MD, Owen KQ, Nelssen JL, Blum SA, Campbell RG, Smits R, Dritz SS, Civis CA (1999) Effects of l-carnitine fed during lactation on sow and litter performance. J Anim Sci 77:3289–3295

    CAS  Google Scholar 

  114. Ramanau A, Kluge H, Spilke J, Eder K (2002) Reproductive performance of sows supplemented with dietary l-carnitine over three reproductive cycles. Arch Anim Nutr 56:287–296

    CAS  Google Scholar 

  115. Ramanau A, Kluge H, Spilke J, Eder K (2004) Supplementation of sows with l-carnitine during pregnancy and lactation improves growth of the piglets during the suckling period through increased milk production. J Nutr 134:86–92

    CAS  Google Scholar 

  116. Kelley RL, Jungst SB, Spencer TE, Owsley WF, Rahe CH, Mulvaney DR (1995) Maternal treatment with somatotropin alters embryonic development and early postnatal growth of pigs. Domest Anim Endocrinol 12:83–94

    CAS  Google Scholar 

  117. Baumann MU, Deborde S, Illsley NP (2002) Placental glucose transfer and fetal growth. Endocrine 19:13–22

    CAS  Google Scholar 

  118. Waber LJ, Valle D, Neill C, DiMauro S, Shug A (1982) Carnitine deficiency presenting as familial cardiomyopathy: a treatable defect in carnitine transport. J Pediatr 101:700–705

    CAS  Google Scholar 

  119. Glasgow AM, Engel AG, Bier DM, Perry LW, Dickie M, Todaro J, Brown BI, Utter MF (1983) Hypoglycemia, hepatic dysfunction, muscle weakness, cardiomyopathy, free carnitine deficiency and long-chain acylcarnitine excess responsive to medium chain triglyceride diet. Pediatr Res 17:319–326

    CAS  Google Scholar 

  120. Tripp ME, Katcher ML, Peters HA, Gilbert EF, Arya S, Hodach RJ, Shug AL (1981) Systemic carnitine deficiency presenting as familial endocardial fibroelastosis: a treatable cardiomyopathy. N Engl J Med 305:385–390

    CAS  Google Scholar 

  121. Tassani V, Cattapan F, Magnanimi L, Peschechera A (1994) Anaplerotic effect of propionyl carnitine in rat heart mitochondria. Biochem Biophys Res Commun 199:949–953

    CAS  Google Scholar 

  122. Capaldo B, Napoli R, Di Bonito P, Albano G, Saccà L (1991) Carnitine improves peripheral glucose disposal in non-insulin-dependent diabetic patients. Diabetes Res Clin Pract 14:191–195

    CAS  Google Scholar 

  123. Günal AI, Celiker H, Dönder E, Günal SY (1999) The effect of l-carnitine on insulin resistance in hemodialysed patients with chronic renal failure. J Nephrol 12:38–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Eder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ringseis, R., Keller, J. & Eder, K. Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur J Nutr 51, 1–18 (2012). https://doi.org/10.1007/s00394-011-0284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0284-2

Keywords

Navigation