Skip to main content
Log in

Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Multiple cellular stress responses have been implicated in chronic diseases such as obesity, diabetes, cardiovascular, and inflammatory bowel diseases. Even though phenotypically different, chronic diseases share cellular stress signaling pathways, in particular endoplasmic reticulum (ER) unfolded protein response (UPR).

Results and methods

The purpose of the ER UPR is to restore ER homeostasis after challenges of the ER function. Among the triggers of ER UPR are changes in the redox status, elevated protein synthesis, accumulation of unfolded or misfolded proteins, energy deficiency and glucose deprivation, cholesterol depletion, and microbial signals. Numerous mouse models have been used to characterize the contribution of ER UPR to several pathologies, and ER UPR-associated signaling has also been demonstrated to be relevant in humans. Additionally, recent evidence suggests that the ER UPR is interrelated with metabolic and inflammatory pathways, autophagy, apoptosis, and mitochondrial stress signaling. Furthermore, microbial as well as nutrient sensing is integrated into the ER-associated signaling network.

Conclusion

The data discussed in the present review highlight the interaction of ER UPR with inflammatory pathways, metabolic processes and mitochondrial function, and their interrelation in the context of chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ogden CL, Lamb MM, Carroll MD, Flegal KM (2010) Obesity and socioeconomic status in children and adolescents: United States, 2005–2008. NCHS Data Brief 2010:1–8

    Google Scholar 

  2. Hossain P, Kawar B, El Nahas M (2007) Obesity and diabetes in the developing world—a growing challenge. N Engl J Med 356:213–215

    CAS  Google Scholar 

  3. Sartor RB (2006) Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3:390–407

    CAS  Google Scholar 

  4. Rodgers A, Ezzati M, Vander Hoorn S, Lopez AD et al (2004) Distribution of major health risks: findings from the Global Burden of Disease study. PLoS Med 1:e27

    Google Scholar 

  5. Renz H, von Mutius E, Brandtzaeg P, Cookson WO, Autenrieth IB, Haller D (2011) Gene-environment interactions in chronic inflammatory disease. Nat Immunol 12(4):273−277

    Google Scholar 

  6. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    CAS  Google Scholar 

  7. Ma Y, Hendershot LM (2004) The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 4:966–977

    CAS  Google Scholar 

  8. Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462

    CAS  Google Scholar 

  9. Ozcan U, Cao Q, Yilmaz E, Lee AH et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461

    Google Scholar 

  10. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    CAS  Google Scholar 

  11. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Google Scholar 

  12. Rutkowski DT, Arnold SM, Miller CN, Wu J et al (2006) Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 4:e374

    Google Scholar 

  13. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    CAS  Google Scholar 

  14. Bertolotti A, Wang X, Novoa I, Jungreis R et al (2001) Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J Clin Invest 107:585–593

    CAS  Google Scholar 

  15. Heazlewood CK, Cook MC, Eri R, Price GR et al (2008) Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 5:e54

    Google Scholar 

  16. Kaser A, Lee AH, Franke A, Glickman JN et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743–756

    CAS  Google Scholar 

  17. Martinon F, Chen X, Lee AH, Glimcher LH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11:411–418

    CAS  Google Scholar 

  18. Deng J, Lu PD, Zhang Y, Scheuner D et al (2004) Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 24:10161–10168

    CAS  Google Scholar 

  19. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380

    CAS  Google Scholar 

  20. Hu P, Han Z, Couvillon AD, Kaufman RJ et al (2006) Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 26:3071–3084

    CAS  Google Scholar 

  21. Burkart A, Shi X, Chouinard M, Corvera S (2010) Adenylate kinase 2 links mitochondrial energy metabolism to the induction of the unfolded protein response. J Biol Chem

  22. Pouyssegur J, Shiu RP, Pastan I (1977) Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation. Cell 11:941–947

    CAS  Google Scholar 

  23. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917

    CAS  Google Scholar 

  24. Scheuner D, Song B, McEwen E, Liu C et al (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7:1165–1176

    CAS  Google Scholar 

  25. Pizzo P, Pozzan T (2007) Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol 17:511–517

    CAS  Google Scholar 

  26. Lim JH, Lee HJ, Ho Jung M, Song J (2009) Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance. Cell Signal 21:169–177

    CAS  Google Scholar 

  27. Fukushima K, Fiocchi C (2004) Paradoxical decrease of mitochondrial DNA deletions in epithelial cells of active ulcerative colitis patients. Am J Physiol Gastrointest Liver Physiol 286:G804–G813

    CAS  Google Scholar 

  28. Haga N, Saito S, Tsukumo Y, Sakurai J et al. (2010) Mitochondria regulate the unfolded protein response leading to cancer cell survival under glucose deprivation conditions. Cancer Sci

  29. Arduino DM, Esteves AR, Domingues AF, Pereira CM et al (2009) ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells. BMB Rep 42:719–724

    CAS  Google Scholar 

  30. Chen X, Shen J, Prywes R (2002) The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 277:13045–13052

    CAS  Google Scholar 

  31. Calfon M, Zeng H, Urano F, Till JH et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    CAS  Google Scholar 

  32. Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90:1031–1039

    CAS  Google Scholar 

  33. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459

    CAS  Google Scholar 

  34. Yamamoto K, Sato T, Matsui T, Sato M et al (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13:365–376

    CAS  Google Scholar 

  35. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH et al (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21:81–93

    CAS  Google Scholar 

  36. Sriburi R, Jackowski S, Mori K, Brewer JW (2004) XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol 167:35–41

    CAS  Google Scholar 

  37. Hollien J, Lin JH, Li H, Stevens N et al (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 186:323–331

    CAS  Google Scholar 

  38. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K et al (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    CAS  Google Scholar 

  39. Urano F, Wang X, Bertolotti A, Zhang Y et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666

    CAS  Google Scholar 

  40. Yoshida H, Haze K, Yanagi H, Yura T et al (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273:33741–33749

    CAS  Google Scholar 

  41. Kokame K, Kato H, Miyata T (2001) Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem 276:9199–9205

    CAS  Google Scholar 

  42. Bommiasamy H, Back SH, Fagone P, Lee K et al (2009) ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J Cell Sci 122:1626–1636

    CAS  Google Scholar 

  43. Bailey D, O’Hare P (2007) Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid Redox Signal 9:2305–2321

    CAS  Google Scholar 

  44. Murakami T, Saito A, Hino S, Kondo S et al (2009) Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat Cell Biol 11:1205–1211

    CAS  Google Scholar 

  45. Zhang K, Shen X, Wu J, Sakaki K et al (2006) Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124:587–599

    CAS  Google Scholar 

  46. Wu J, Rutkowski DT, Dubois M, Swathirajan J et al (2007) ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13:351–364

    CAS  Google Scholar 

  47. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    CAS  Google Scholar 

  48. Harding HP, Zhang Y, Bertolotti A, Zeng H et al (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904

    CAS  Google Scholar 

  49. Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318:1351–1365

    CAS  Google Scholar 

  50. Connor JH, Weiser DC, Li S, Hallenbeck JM et al (2001) Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol Cell Biol 21:6841–6850

    CAS  Google Scholar 

  51. Brush MH, Weiser DC, Shenolikar S (2003) Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 23:1292–1303

    CAS  Google Scholar 

  52. Cullinan SB, Diehl JA (2006) Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 38:317–332

    CAS  Google Scholar 

  53. Cullinan SB, Zhang D, Hannink M, Arvisais E et al (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23:7198–7209

    CAS  Google Scholar 

  54. Garcia MA, Gil J, Ventoso I, Guerra S et al (2006) Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70:1032–1060

    CAS  Google Scholar 

  55. Nguyen DT, Kebache S, Fazel A, Wong HN et al (2004) Nck-dependent activation of extracellular signal-regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress. Mol Biol Cell 15:4248–4260

    CAS  Google Scholar 

  56. Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL et al (2003) Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 4:321–329

    CAS  Google Scholar 

  57. Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P et al (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300–307

    CAS  Google Scholar 

  58. Yamazaki H, Hiramatsu N, Hayakawa K, Tagawa Y et al (2009) Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. J Immunol 183:1480–1487

    CAS  Google Scholar 

  59. Jiang HY, Wek SA, McGrath BC, Scheuner D et al (2003) Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 23:5651–5663

    CAS  Google Scholar 

  60. Li Y, Schwabe RF, DeVries-Seimon T, Yao PM et al (2005) Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem 280:21763–21772

    CAS  Google Scholar 

  61. Zhang X, Zhang G, Zhang H, Karin M et al (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135:61–73

    CAS  Google Scholar 

  62. Uehara T, Nakamura T, Yao D, Shi ZQ et al (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441:513–517

    CAS  Google Scholar 

  63. Haynes CM, Titus EA, Cooper AA (2004) Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 15:767–776

    CAS  Google Scholar 

  64. Woo CW, Cui D, Arellano J, Dorweiler B et al (2009) Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat Cell Biol 11:1473–1480

    CAS  Google Scholar 

  65. Messlik A, Schmechel S, Kisling S, Bereswill S et al (2009) Loss of Toll-like receptor 2 and 4 leads to differential induction of endoplasmic reticulum stress and proapoptotic responses in the intestinal epithelium under conditions of chronic inflammation. J Proteome Res 8:4406–4417

    CAS  Google Scholar 

  66. Aprahamian CJ, Lorenz RG, Harmon CM, Dimmit RA (2008) Toll-like receptor 2 is protective of ischemia-reperfusion-mediated small-bowel injury in a murine model. Pediatr Crit Care Med 9:105–109

    Google Scholar 

  67. Hoyer-Hansen M, Jaattela M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14:1576–1582

    CAS  Google Scholar 

  68. Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886–897

    CAS  Google Scholar 

  69. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    CAS  Google Scholar 

  70. Ogata M, Hino S, Saito A, Morikawa K et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    CAS  Google Scholar 

  71. Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4:e423

    Google Scholar 

  72. Kouroku Y, Fujita E, Tanida I, Ueno T et al (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14:230–239

    CAS  Google Scholar 

  73. Fujita E, Kouroku Y, Isoai A, Kumagai H et al (2007) Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum Mol Genet 16:618–629

    CAS  Google Scholar 

  74. Scherz-Shouval R, Elazar Z (2010) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36:30–38

    Google Scholar 

  75. Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150:887–894

    CAS  Google Scholar 

  76. Nakagawa T, Zhu H, Morishima N, Li E et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    CAS  Google Scholar 

  77. Tan Y, Dourdin N, Wu C, De Veyra T et al (2006) Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281:16016–16024

    CAS  Google Scholar 

  78. Morishima N, Nakanishi K, Takenouchi H, Shibata T et al (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277:34287–34294

    CAS  Google Scholar 

  79. Rao RV, Castro-Obregon S, Frankowski H, Schuler M et al (2002) Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem 277:21836–21842

    CAS  Google Scholar 

  80. Fischer H, Koenig U, Eckhart L, Tschachler E (2002) Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun 293:722–726

    CAS  Google Scholar 

  81. Hitomi J, Katayama T, Eguchi Y, Kudo T et al (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165:347–356

    CAS  Google Scholar 

  82. Fawcett TW, Martindale JL, Guyton KZ, Hai T et al (1999) Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339(Pt 1):135–141

    CAS  Google Scholar 

  83. Lin JH, Li H, Zhang Y, Ron D et al (2009) Divergent effects of PERK and IRE1 signaling on cell viability. PLoS One 4:e4170

    Google Scholar 

  84. Harding HP, Novoa I, Zhang Y, Zeng H et al (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    CAS  Google Scholar 

  85. Zinszner H, Kuroda M, Wang X, Batchvarova N et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    CAS  Google Scholar 

  86. McCullough KD, Martindale JL, Klotz LO, Aw TY et al (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    CAS  Google Scholar 

  87. Puthalakath H, O’Reilly LA, Gunn P, Lee L et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349

    CAS  Google Scholar 

  88. Marciniak SJ, Yun CY, Oyadomari S, Novoa I et al (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18:3066–3077

    CAS  Google Scholar 

  89. Chami M, Oules B, Szabadkai G, Tacine R et al (2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell 32:641–651

    CAS  Google Scholar 

  90. Lin JH, Li H, Yasumura D, Cohen HR et al (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–949

    CAS  Google Scholar 

  91. Wei MC, Zong WX, Cheng EH, Lindsten T et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    CAS  Google Scholar 

  92. Scorrano L, Oakes SA, Opferman JT, Cheng EH et al (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139

    CAS  Google Scholar 

  93. Zong WX, Li C, Hatzivassiliou G, Lindsten T et al (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69

    CAS  Google Scholar 

  94. Hetz C, Bernasconi P, Fisher J, Lee AH et al (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312:572–576

    CAS  Google Scholar 

  95. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M et al (2007) XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell 27:53–66

    CAS  Google Scholar 

  96. Wang Y, Vera L, Fischer WH, Montminy M (2009) The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature 460:534–537

    CAS  Google Scholar 

  97. Back SH, Scheuner D, Han J, Song B et al (2009) Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metab 10:13–26

    CAS  Google Scholar 

  98. Oyadomari S, Harding HP, Zhang Y, Oyadomari M et al (2008) Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab 7:520–532

    CAS  Google Scholar 

  99. Gregor MG, Hotamisligil GS (2007) Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res

  100. Chen JC, Wu ML, Huang KC, Lin WW (2008) HMG-CoA reductase inhibitors activate the unfolded protein response and induce cytoprotective GRP78 expression. Cardiovasc Res 80:138–150

    CAS  Google Scholar 

  101. Wolins NE, Brasaemle DL, Bickel PE (2006) A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett 580:5484–5491

    CAS  Google Scholar 

  102. Lee AH, Scapa EF, Cohen DE, Glimcher LH (2008) Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320:1492–1496

    CAS  Google Scholar 

  103. Bobrovnikova-Marjon E, Hatzivassiliou G, Grigoriadou C, Romero M et al (2008) PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation. Proc Natl Acad Sci U S A 105:16314–16319

    CAS  Google Scholar 

  104. Rutkowski DT, Wu J, Back SH, Callaghan MU et al (2008) UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell 15:829–840

    CAS  Google Scholar 

  105. Yang J, Croniger CM, Lekstrom-Himes J, Zhang P et al (2005) Metabolic response of mice to a postnatal ablation of CCAAT/enhancer-binding protein alpha. J Biol Chem 280:38689–38699

    CAS  Google Scholar 

  106. Flodby P, Barlow C, Kylefjord H, Ahrlund-Richter L et al (1996) Increased hepatic cell proliferation and lung abnormalities in mice deficient in CCAAT/enhancer binding protein alpha. J Biol Chem 271:24753–24760

    CAS  Google Scholar 

  107. Wang ND, Finegold MJ, Bradley A, Ou CN et al (1995) Impaired energy homeostasis in C/EBP alpha knockout mice. Science 269:1108–1112

    CAS  Google Scholar 

  108. Nicholas SA, Coughlan K, Yasinska I, Lall GS et al. (2011) Dysfunctional mitochondria contain endogenous high-affinity human Toll-like receptor 4 (TLR4) ligands and induce TLR4-mediated inflammatory reactions. Int J Biochem Cell Biol

  109. Hori O, Ichinoda F, Tamatani T, Yamaguchi A et al (2002) Transmission of cell stress from endoplasmic reticulum to mitochondria: enhanced expression of Lon protease. J Cell Biol 157:1151–1160

    CAS  Google Scholar 

  110. Aldridge JE, Horibe T, Hoogenraad NJ (2007) Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS ONE 2:e874

    Google Scholar 

  111. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S et al (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419

    CAS  Google Scholar 

  112. Horibe T, Hoogenraad NJ (2007) The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response. PLoS One 2:e835

    Google Scholar 

  113. Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76:701–722

    CAS  Google Scholar 

  114. Haynes CM, Yang Y, Blais SP, Neubert TA et al (2010) The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37:529–540

    CAS  Google Scholar 

  115. Haynes CM, Petrova K, Benedetti C, Yang Y et al (2007) ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 13:467–480

    CAS  Google Scholar 

  116. Koll H, Guiard B, Rassow J, Ostermann J et al (1992) Antifolding activity of hsp60 couples protein import into the mitochondrial matrix with export to the intermembrane space. Cell 68:1163–1175

    CAS  Google Scholar 

  117. Lee ES, Yoon CH, Kim YS, Bae YS (2007) The double-strand RNA-dependent protein kinase PKR plays a significant role in a sustained ER stress-induced apoptosis. FEBS Lett 581:4325–4332

    CAS  Google Scholar 

  118. Nakamura T, Furuhashi M, Li P, Cao H et al (2010) Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140:338–348

    CAS  Google Scholar 

  119. Takada Y, Ichikawa H, Pataer A, Swisher S et al (2007) Genetic deletion of PKR abrogates TNF-induced activation of IkappaBalpha kinase, JNK, Akt and cell proliferation but potentiates p44/p42 MAPK and p38 MAPK activation. Oncogene 26:1201–1212

    CAS  Google Scholar 

  120. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552–1555

    CAS  Google Scholar 

  121. Colley NJ, Cassill JA, Baker EK, Zuker CS (1995) Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. Proc Natl Acad Sci USA 92:3070–3074

    CAS  Google Scholar 

  122. Feldman DE, Chauhan V, Koong AC (2005) The unfolded protein response: a novel component of the hypoxic stress response in tumors. Mol Cancer Res 3:597–605

    CAS  Google Scholar 

  123. Koumenis C, Naczki C, Koritzinsky M, Rastani S et al (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22:7405–7416

    CAS  Google Scholar 

  124. Blais JD, Filipenko V, Bi M, Harding HP et al (2004) Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 24:7469–7482

    CAS  Google Scholar 

  125. Romero-Ramirez L, Cao H, Nelson D, Hammond E et al (2004) XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 64:5943–5947

    CAS  Google Scholar 

  126. Carrasco DR, Sukhdeo K, Protopopova M, Sinha R et al (2007) The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 11:349–360

    CAS  Google Scholar 

  127. Erbay E, Babaev VR, Mayers JR, Makowski L et al (2009) Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat Med 15:1383–1391

    CAS  Google Scholar 

  128. Huang CJ, Haataja L, Gurlo T, Butler AE et al (2007) Induction of endoplasmic reticulum stress-induced beta-cell apoptosis and accumulation of polyubiquitinated proteins by human islet amyloid polypeptide. Am J Physiol Endocrinol Metab 293:E1656–E1662

    CAS  Google Scholar 

  129. Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z et al (2004) Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology 145:5087–5096

    CAS  Google Scholar 

  130. Borradaile NM, Han X, Harp JD, Gale SE et al (2006) Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 47:2726–2737

    CAS  Google Scholar 

  131. Shoelson SE, Herrero L, Naaz A (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132:2169–2180

    CAS  Google Scholar 

  132. Harding HP, Zeng H, Zhang Y, Jungries R et al (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 7:1153–1163

    CAS  Google Scholar 

  133. Delepine M, Nicolino M, Barrett T, Golamaully M et al (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25:406–409

    CAS  Google Scholar 

  134. Park SW, Zhou Y, Lee J, Lu A et al (2010) The regulatory subunits of PI3 K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation. Nat Med 16:429–437

    CAS  Google Scholar 

  135. Winnay JN, Boucher J, Mori MA, Ueki K et al (2010) A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response. Nat Med 16:438–445

    CAS  Google Scholar 

  136. Zhou Y, Lee J, Reno CM, Sun C et al (2011) Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction. Nat Med 17:356–365

    CAS  Google Scholar 

  137. Ozawa K, Miyazaki M, Matsuhisa M, Takano K et al (2005) The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes 54:657–663

    CAS  Google Scholar 

  138. Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K et al (2005) Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem 280:847–851

    CAS  Google Scholar 

  139. Kammoun HL, Chabanon H, Hainault I, Luquet S et al (2009) GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 119:1201–1215

    CAS  Google Scholar 

  140. Rodriguez A, Duran A, Selloum M, Champy MF et al (2006) Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab 3:211–222

    CAS  Google Scholar 

  141. Ebato C, Uchida T, Arakawa M, Komatsu M et al (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8:325–332

    CAS  Google Scholar 

  142. Jung HS, Chung KW, Won Kim J, Kim J et al (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8:318–324

    CAS  Google Scholar 

  143. Billing O, Kao G, Naredi P (2011) Mitochondrial Function Is Required for Secretion of DAF-28/Insulin in C. elegans. PLoS One 6:e14507

    CAS  Google Scholar 

  144. Clavel T, Haller D (2007) Bacteria- and host-derived mechanisms to control intestinal epithelial cell homeostasis: implications for chronic inflammation. Inflamm Bowel Dis 13:1153–1164

    Google Scholar 

  145. Shkoda A, Ruiz PA, Daniel H, Kim SC et al (2007) Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. Gastroenterology 132:190–207

    CAS  Google Scholar 

  146. Hampe J, Franke A, Rosenstiel P, Till A et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39:207–211

    CAS  Google Scholar 

  147. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39:596–604

    CAS  Google Scholar 

  148. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447:661–678

  149. Parkes M, Barrett JC, Prescott NJ, Tremelling M et al (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39:830–832

    CAS  Google Scholar 

  150. Hugot JP, Chamaillard M, Zouali H, Lesage S et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603

    CAS  Google Scholar 

  151. Ogura Y, Bonen DK, Inohara N, Nicolae DL et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606

    CAS  Google Scholar 

  152. Franchimont D, Vermeire S, El Housni H, Pierik M et al (2004) Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut 53:987–992

    CAS  Google Scholar 

  153. Cadwell K, Liu JY, Brown SL, Miyoshi H et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal paneth cells. Nature 456:259–263

    CAS  Google Scholar 

  154. Wehkamp J, Salzman NH, Porter E, Nuding S et al (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 102:18129–18134

    CAS  Google Scholar 

  155. Kaser A, Blumberg RS (2008) Paneth cells and inflammation dance together in Crohn’s disease. Cell Res 18:1160–1162

    CAS  Google Scholar 

  156. Werner T, Wagner SJ, Martinez I, Walter J et al (2011) Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut 60:325–333

    CAS  Google Scholar 

  157. Vecchi C, Montosi G, Zhang K, Lamberti I et al (2009) ER stress controls iron metabolism through induction of hepcidin. Science 325:877–880

    CAS  Google Scholar 

  158. Beltran B, Nos P, Dasi F, Iborra M et al (2010) Mitochondrial dysfunction, persistent oxidative damage, and catalase inhibition in immune cells of naive and treated Crohn’s disease. Inflamm Bowel Dis 16:76–86

    Google Scholar 

  159. He D, Sougioultzis S, Hagen S, Liu J et al (2002) Clostridium difficile toxin A triggers human colonocyte IL-8 release via mitochondrial oxygen radical generation. Gastroenterology 122:1048–1057

    CAS  Google Scholar 

  160. Kamizato M, Nishida K, Masuda K, Takeo K et al (2009) Interleukin 10 inhibits interferon gamma- and tumor necrosis factor alpha-stimulated activation of NADPH oxidase 1 in human colonic epithelial cells and the mouse colon. J Gastroenterol 44:1172–1184

    CAS  Google Scholar 

  161. Lewis K, Lutgendorff F, Phan V, Soderholm JD et al (2010) Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis 16:1138–1148

    Google Scholar 

  162. Nazli A, Yang PC, Jury J, Howe K et al (2004) Epithelia under metabolic stress perceive commensal bacteria as a threat. Am J Pathol 164:947–957

    Google Scholar 

  163. Soderholm JD, Olaison G, Peterson KH, Franzen LE et al (2002) Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn’s disease. Gut 50:307–313

    CAS  Google Scholar 

  164. Schurmann G, Bruwer M, Klotz A, Schmid KW et al (1999) Transepithelial transport processes at the intestinal mucosa in inflammatory bowel disease. Int J Colorectal Dis 14:41–46

    CAS  Google Scholar 

  165. Silva AM, Wang D, Komar AA, Castilho BA et al (2007) Salicylates trigger protein synthesis inhibition in a protein kinase R-like endoplasmic reticulum kinase-dependent manner. J Biol Chem 282:10164–10171

    CAS  Google Scholar 

  166. Palakurthi SS, Aktas H, Grubissich LM, Mortensen RM et al (2001) Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor gamma and mediated by inhibition of translation initiation. Cancer Res 61:6213–6218

    CAS  Google Scholar 

  167. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140

    Google Scholar 

  168. Ota T, Gayet C, Ginsberg HN (2008) Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest 118:316–332

    CAS  Google Scholar 

  169. Boyce M, Bryant KF, Jousse C, Long K et al (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939

    CAS  Google Scholar 

  170. Sokka AL, Putkonen N, Mudo G, Pryazhnikov E et al (2007) Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J Neurosci 27:901–908

    CAS  Google Scholar 

  171. Palacios HH, Yendluri BB, Parvathaneni K, Shadlinski VB et al (2011) Mitochondrion-specific antioxidants as drug treatments for Alzheimer disease. CNS Neurol Disord Drug Targets 10:149–162

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Haller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rath, E., Haller, D. Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies. Eur J Nutr 50, 219–233 (2011). https://doi.org/10.1007/s00394-011-0197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0197-0

Keywords

Navigation