Skip to main content

Advertisement

Log in

Effects of oxysterols on cell viability, inflammatory cytokines, VEGF, and reactive oxygen species production on human retinal cells: cytoprotective effects and prevention of VEGF secretion by resveratrol

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background and aims

Oxysterols are assumed to play important roles in age-related macular degeneration, a major cause of blindness. So we characterized the cytotoxic, oxidative, inflammatory, and angiogenic activities of oxysterols (7β-hydroxycholesterol (7β-OH), 7-ketocholesterol (7KC), 25-hydroxycholesterol (25-OH)) in human retinal ARPE-19 cells, and evaluated the protective effects of resveratrol (Rsv: 1 μM), a polyphenol from red wine.

Methods

ARPE-19 cells were treated with 7β-OH, 7KC, or 25-OH (5–40 μg/mL; 24–48 h) without or with Rsv. Cell viability was determined using trypan blue and the MTT assay. Cell death was characterized by electron microscopy and in situ detection of activated caspases with fluorochrome-labeled inhibitors of caspases. Reactive oxygen species (ROS) production was measured with hydroethidine. ELISA methods and a cytometric bead assay were used to quantify cytokines involved in inflammation (IL-8, IL-1β, IL-6, IL-10, IL-12p70, TNF-α, MCP-1) and VEGF.

Results

7β-OH and 7KC triggered a caspase-independent cell death process associated with the presence of multilamellar cytoplasmic structures evocating phospholipidosis, increased ROS production, and IL-8 secretion. 7β-OH enhanced VEGF secretion. No cytotoxic effects were identified with 25-OH, which highly stimulated ROS production, MCP-1, and VEGF secretion. With oxysterols, no IL-10, TNF-α, and IL-12p70 secretion were detected. 25-OH induced IL-8 secretion through the MEK/ERK½ signaling pathway, and Rsv showed cytoprotective activities and inhibited VEGF secretion.

Conclusion

7β-OH, 7KC, and 25-OH have cytotoxic, oxidative, inflammatory, and/or angiogenic activities on ARPE-19 cells. As Rsv has some protective effects against oxysterol-induced cell death and VEGF secretion it could be valuable in ARMD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Klein R, Klein BE, Linton KL (1992) Prevalence of age-related maculopathy. The Beaver dam eye study. Ophthalmology 99:933–943

    CAS  Google Scholar 

  2. Malvitte L, Montange T, Joffre C, Vejux A, Maïza C, Bron A, Creuzot-Garcher C, Lizard G (2006) Analogies between atherosclerosis and age-related maculopathy: expected roles of oxysterols. J Fr Ophtalmol 29:570–578

    Article  CAS  Google Scholar 

  3. Curcio CA, Presley JB, Malek G, Medeiros NE, Avery DV, Kruth HS (2005) Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Exp Eye Res 81:731–741

    Article  CAS  Google Scholar 

  4. Kopitz J, Holz FG, Kaemmerer E, Schutt F (2004) Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration. Biochimie 86:825–831

    Article  CAS  Google Scholar 

  5. Rodriguez IR, Fliesler SJ (2009) Photodamage generates 7-keto- and 7-hydroxycholesterol in the rat retina via a free radical-mediated mechanism. Photochem Photobiol 85:1116–1125

    Article  CAS  Google Scholar 

  6. Javitt NB, Javitt JC (2009) The retinal oxysterol pathway: a unifying hypothesis for the cause of age-related macular degeneration. Curr Opin Ophthalmol 20:151–157

    Article  Google Scholar 

  7. Malvitte L, Montange T, Vejux A, Joffre C, Bron A, Creuzot-Garcher C, Lizard G (2008) Activation of a caspase-3-independent mode of cell death associated with lysosomal destabilization in cultured human retinal pigment epithelial cells (ARPE-19) exposed to 7beta-hydroxycholesterol. Curr Eye Res 33:769–781

    CAS  Google Scholar 

  8. Elner SG, Elner VM, Field MG, Park S, Heckenlively JR, Petty HR (2008) Retinal flavoprotein autofluorescence as a measure of retinal health. Trans Am Ophthalmol Soc 106:215–222

    Google Scholar 

  9. Dunaief JL, Dentchev T, Ying GS, Milam AH (2002) The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 120:1435–1442

    Google Scholar 

  10. Ong JM, Aoki AM, Seigel GM, Sacerio I, Castellon R, Nesburn AB, Kenney MC (2003) Oxysterol-induced toxicity in R28 and ARPE-19 cells. Neurochem Res 28:883–891

    Article  CAS  Google Scholar 

  11. Rodriguez IR, Alam S, Lee JW (2004) Cytotoxicity of oxidized low-density lipoprotein in cultured RPE cells is dependent on the formation of 7-ketocholesterol. Invest Ophthalmol Vis Sci 45:2830–2837

    Article  Google Scholar 

  12. Chang JY, Liu LZ (1998) Toxicity of cholesterol oxides on cultured neuroretinal cells. Curr Eye Res 17:95–103

    Article  CAS  Google Scholar 

  13. Joffre C, Leclere L, Buteau B, Martine L, Cabaret S, Malvitte L, Acar N, Lizard G, Bron A, Creuzot-Garcher C, Bretillon L (2007) Oxysterols induced inflammation and oxidation in primary porcine retinal pigment epithelial cells. Curr Eye Res 32:271–280

    Article  CAS  Google Scholar 

  14. Luthra S, Fardin B, Dong J, Hertzog D, Kamjoo S, Gebremariam S, Butani V, Narayanan R, Mungcal JK, Kuppermann BD, Kenney MC (2006) Activation of caspase-8 and caspase-12 pathways by 7-ketocholesterol in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 47:5569–5575

    Article  Google Scholar 

  15. Moreira EF, Larrayoz IM, Lee JW, Rodríguez IR (2009) 7-Ketocholesterol is present in lipid deposits in the primate retina: potential implication in the induction of VEGF and CNV formation. Invest Ophthalmol Vis Sci 50:523–532

    Article  Google Scholar 

  16. Gordiyenko N, Campos M, Lee JW, Fariss RN, Sztein J, Rodriguez IR (2004) RPE cells internalize low-density lipoprotein (LDL) and oxidized LDL (oxLDL) in large quantities in vitro and in vivo. Invest Ophthalmol Vis Sci 45:2822–2829

    Article  Google Scholar 

  17. Lemaire S, Lizard G, Monier S, Miguet C, Gueldry S, Volot F, Gambert P, Néel D (1998) Different patterns of IL-1β secretion, adhesion molecule expression and apoptosis induction in human endothelial cells treated with 7α-, 7β-hydroxycholesterol, or 7-ketocholesterol. FEBS Lett 440:434–439

    Article  CAS  Google Scholar 

  18. Ramos MA, Kuzuya M, Esaki T, Miura S, Satake S, Asai T, Kanda S, Hayashi T, Iguchi A (1998) Induction of macrophage VEGF in response to oxidized LDL and VEGF accumulation in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 18:1188–1196

    CAS  Google Scholar 

  19. Lemaire-Ewing S, Prunet C, Montange T, Vejux A, Berthier A, Bessède G, Corcos L, Gambert P, Néel D, Lizard G (2005) Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol Toxicol 21:97–114

    Article  CAS  Google Scholar 

  20. Prunet C, Montange T, Vejux A, Laubriet A, Rohmer JF, Riedinger JM, Athias A, Lemaire-Ewing S, Néel D, Petit JM, Steinmetz E, Brenot R, Gambert P, Lizard G (2006) Multiplexed flow cytometric analyses of pro- and anti-inflammatory cytokines in the culture media of oxysterol-treated human monocytic cells and in the sera of atherosclerotic patients. Cytometry A 69:359–373

    Google Scholar 

  21. Delmas D, Jannin B, Latruffe N (2005) Resveratrol: preventing properties against vascular alterations and ageing. Mol Nutr Food Res 49:377–395

    Article  CAS  Google Scholar 

  22. Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72:1439–1452

    Article  CAS  Google Scholar 

  23. de Kok TM, van Breda SG, Manson NM (2008) Mechanisms of combined action of different chemopreventive dietary compounds. Eur J Nutr 47(suppl 2):51–59

    Article  CAS  Google Scholar 

  24. Dann JM, Sykes PH, Mason DR, Evans JJ (2009) Regulation of vascular endothelial growth factor in endometrial tumour cells by resveratrol and EGCG. Gynecol Oncol 113:374–378

    Article  CAS  Google Scholar 

  25. Pedruzzi E, Guichard C, Ollivier V, Driss F, Fay M, Prunet C, Marie JC, Pouzet C, Samadi M, Elbim C, O’dowd Y, Bens M, Vandewalle A, Gougerot-Pocidalo MA, Lizard G, Ogier-Denis E (2004) NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol 24:10703–10717

    Article  CAS  Google Scholar 

  26. Scherle PA, Jones EA, Favata MF, Daulerio AJ, Covington MB, Nurnberg SA, Magolda RL, Trzaskos JM (1998) Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. J Immunol 161:5681–5686

    CAS  Google Scholar 

  27. Vejux A, Malvitte L, Lizard G (2008) Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis. Braz J Med Biol Res 41:545–556

    Article  CAS  Google Scholar 

  28. Shaul YD, Seger R (2007) The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773:1213–1226

    Article  CAS  Google Scholar 

  29. Brown AJ, Jessup W (2009) Oxysterols sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol Aspects Med 30:111–122

    Article  CAS  Google Scholar 

  30. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM (1996) ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62:155–169

    Article  CAS  Google Scholar 

  31. Sheu SJ, Bee YS, Chen CH (2008) Resveratrol and large-conductance calcium-activated potassium channels in the protection of human retinal pigment epithelial cells. J Ocul Pharmacol Ther 24:551–555

    Article  CAS  Google Scholar 

  32. Luna C, Li G, Liton PB, Qiu J, Epstein DL, Challa P, Gonzalez P (2009) Resveratrol prevents the expression of glaucoma markers induced by chronic oxidative stress in trabecular meshwork cells. Food Chem Toxicol 47:198–204

    Article  CAS  Google Scholar 

  33. Tang Z, Liu XY, Zou P (2007) Resveratrol inhibits the secretion of vascular endothelial growth factor and subsequent proliferation in human leukemia U937 cells. J Huazhong Univ Sci Technolog Med Sci 27:508–512

    Article  CAS  Google Scholar 

  34. Kimura Y, Sumiyoshi M, Baba K (2008) Antitumor activities of synthetic and natural stilbenes through antiangiogenic action. Cancer Sci 99:2083–2096

    Article  CAS  Google Scholar 

  35. Lizard G, Monier S, Cordelet C, Gesquière L, Deckert V, Gueldry S, Lagrost L, Gambert P (1999) Characterization and comparison of the mode of cell death, apoptosis versus necrosis, induced by 7beta-hydroxycholesterol and 7-ketocholesterol in the cells of the vascular wall. Arterioscler Thromb Vasc Biol 19:1190–1200

    CAS  Google Scholar 

  36. Okawara M, Katsuki H, Kurimoto E, Shibata H, Kume T, Akaike A (2007) Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol 73:550–560

    Article  CAS  Google Scholar 

  37. King RE, Kent KD, Bomser JA (2005) Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal-regulated kinase inhibition. Chem Biol Interact 151:143–149

    Article  CAS  Google Scholar 

  38. Vejux A, Kahn E, Ménétrier F, Montange T, Lherminier J, Riedinger JM, Lizard G (2007) Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation. Histochem Cell Biol 127:609–624

    Article  CAS  Google Scholar 

  39. Anderson N, Borlak J (2006) Drug-induced phospholipidosis. FEBS Lett 580:5533–5540

    Article  CAS  Google Scholar 

  40. Schmitz G, Grandl M (2009) Endolysosomal phospholipidosis and cytosolic lipid droplet storage and release in macrophages. Biochim Biophys Acta 1791:524–539

    CAS  Google Scholar 

  41. Lizard G, Miguet C, Bessede G, Monier S, Gueldry S, Neel D, Gambert P (2000) Impairment with various antioxidants of the loss of mitochondrial transmembrane potential and of the cytosolic release of cytochrome c occurring during 7-ketocholesterol-induced apoptosis. Free Radic Biol Med 28:743–753

    Article  CAS  Google Scholar 

  42. O’Callaghan JC, Woods JA, O’Brien NM (2001) Comparative study of the cytotoxic and apoptosis-inducing potential of commonly occurring oxysterols. Cell Biol Toxicol 17:127–137

    Article  Google Scholar 

  43. Lemaire-Ewing S, Berthier A, Royer MC, Logette E, Corcos L, Bouchot A, Monier S, Prunet C, Raveneau M, Rébé C, Desrumaux C, Lizard G, Néel D (2009) 7beta-Hydroxycholesterol and 25-hydroxycholesterol-induced interleukin-8 secretion involves a calcium-dependent activation of c-fos via the ERK1/2 signalling pathway in THP-1 cells: oxysterols-induced IL-8 secretion is calcium-dependent. Cell Biol Toxicol 25:127–139

    Article  CAS  Google Scholar 

  44. Kanda A, Abecasis G, Swaroop A (2008) Inflammation in the pathogenesis of age-related macular degeneration. Br J Ophthalmol 92:448–450

    Article  Google Scholar 

  45. Higgins GT, Wang JH, Dockery P, Cleary PE, Redmond HP (2003) Induction of angiogenic cytokine expression in cultured RPE by ingestion of oxidized photoreceptor outer segments. Invest Ophthalmol Vis Sci 44:1775–1782

    Article  Google Scholar 

  46. Sung SC, Kim K, Lee KA, Choi KH, Kim SM, Son YH, Moon YS, Eo SK, Rhim BY (2009) 7-Ketocholesterol upregulates interleukin-6 via mechanisms that are distinct from those of tumor necrosis factor-alpha, in vascular smooth muscle cells. J Vasc Res 46:36–44

    Article  CAS  Google Scholar 

  47. Yoshida A, Yoshida S, Khalil AK, Ishibashi T, Inomata H (1998) Role of NF-kappaB-mediated interleukin-8 expression in intraocular neovascularization. Invest Ophthalmol Vis Sci 39:1097–1106

    CAS  Google Scholar 

  48. Goldberg DM, Yan J, Soleas GJ (2003) Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin Biochem 36:79–87

    Article  CAS  Google Scholar 

  49. Ziegler CC, Rainwater L, Whelan J, McEntee MF (2004) Dietary resveratrol does not affect intestinal tumorigenesis in ApcMin/+ mice. J Nutr 134:5–10

    CAS  Google Scholar 

  50. Marel AK, Lizard G, Izard JC, Latruffe N, Delmas D (2008) Inhibitory effects of trans-resveratrol analogs molecules on the proliferation and the cell cycle progression of human colon tumoral cells. Mol Nutr Food Res 52:538–548

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the INSERM, and the University Hospital of Dijon (CHU de Dijon). The authors are indebted to Ms. Linda Northrup for reviewing the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Lizard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dugas, B., Charbonnier, S., Baarine, M. et al. Effects of oxysterols on cell viability, inflammatory cytokines, VEGF, and reactive oxygen species production on human retinal cells: cytoprotective effects and prevention of VEGF secretion by resveratrol. Eur J Nutr 49, 435–446 (2010). https://doi.org/10.1007/s00394-010-0102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-010-0102-2

Keywords

Navigation