Skip to main content

Advertisement

Log in

Progress in the science of probiotics: from cellular microbiology and applied immunology to clinical nutrition

  • ORIGINAL CONTRIBUTION
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Summary

Probiotic research is progressing rapidly with strong scientific-based observations. New molecular biologic techniques for the more accurate identification of intestinal microflora and seminal studies that have helped define the function of commensal bacteria in the gut have been reported recently. In functional terms, new techniques are operational to study the affect of microbial–host “crosstalk” between both bacteria and the host. Probiotics have been shown to initiate the activation of specific genes localized to these cells. Both the bacterial and host aspects of microbiota–host crosstalk can now be studied, in particular thanks to simplified in vivo gnotobiotic mouse models. Their functional genomic studies enable the screening for probiotic potential and for investigating the modulated expression of genes involved in a broad range of intestinal functions including regulation of nutrient uptake and metabolism, mucosal barrier and epithelial cell function, xenobiotic metabolism, and strengthening of the innate immune system. An important function of probiotics is its effect on the gut immune system. The latter may work by enhancing mucosal barrier function, preventing apoptosis of epithelial cells and ultimately, decreasing antigen uptake, especially in the small bowel. Clinically, there is strong evidence that some probiotics improve the digestibility of lactose and others prevent the recurrence of pouchitis after inflammatory bowel disease (IBD) surgery. There is reasonably strong evidence for the efficacy of probiotics in childhood infectious gastroenteritis and antibiotic-associated diarrhea. Recent data suggest the potential efficacy of probiotic strains in atopic eczema, IBD, Helicobacter pylori gastritis, neonatal necrotizing enterocolitis and as a substitute for inadequate initial neonatal colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Btheta: :

Bacteroides thetaioitamicron

FISH::

fluorescence in situ hybridization

HMA::

human microbiota-associated

IBD::

inflammatory bowel disease

IBS::

irritable bowel syndrome

NEC::

necrotizing enterocolitis

RCT::

randomized controlled trial

RIVET::

recombinase-based in vivo expression technology

TLR::

toll-like receptor

References

  1. Reid G, Guarner F, Gibson G, et al. (2004) Discussion on toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 127:366–377

    Article  Google Scholar 

  2. Food and Agriculture Organization of the United Nations and World Health Organization (FAO-WHO) (2001) Regulatory and clinical aspects of dairy probiotics. FAO of the United Nations and WHO working group report. Online: http://www.fao.org/es/esn/food/foodandfood_probiocons_en.stmhttp: //who.int/foodsafety/publications.fs_ management/probiotics/en/

  3. Food and Agriculture Organization of the United Nations and World Health Organization (FAO-WHO) (2002) Guidelines for the evaluation of probiotics in food. FAO of the United Nations and WHO working group report; online:FAO: http://www.fao.org/es/esn/food/foodandfood_probiocons_en.stm-WHO:http://who.int/foodsafety/publications.fs_management/probiotics/en/

  4. Lind J (1753) Treatise on the scurvy, Millar A (ed). London

  5. Conseil de l’Europe. Lignes directrices sur la justification scientifique des allégations santé des aliments fonctionnels. Document technique http://www.coe.fr/soc-sp Arch/dav 2001-4

  6. Martini MC, Lerebours EC, Lin WJ, Harlander SK, Berrada NM, Antonie JM, Savaiano DA (1991) Strains and species of lactic acid bacteria in fermented milks (yogurts): effects on in vivo lactose digestion. Am J Clin Nutr 54:1041–1046

    CAS  Google Scholar 

  7. Walker WA, Dai D (1999) Protective nutrients for the immature gut. In: Ziegler EELA, Moro GE (eds) Nutrition of the very low birthweight infant. Lippincott Williams and Wilkins, Philadelphia, pp 179–197

    Google Scholar 

  8. Suau A, Bonnet R, Sutren M, et al. (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    CAS  Google Scholar 

  9. Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J, Gopal PK (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66:2578–2588

    Article  CAS  Google Scholar 

  10. Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46:535–548

    CAS  Google Scholar 

  11. Namsolleck P, Thiel R, Lawson P, et al. (2004) Molecular methods for the analysis of gut microbiota. Microb Ecol Health Dis 16:71–85

    Article  CAS  Google Scholar 

  12. Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465–472

    CAS  Google Scholar 

  13. Blaut M, Collins MD, Welling GW, Dore J, van Loo J, de Vos W (2002) Molecular biological methods for studying the gut microbiota: the EU human gut flora project. Br J Nutr 87(Suppl 2):S203-S211

    Article  CAS  Google Scholar 

  14. Rigottier-Gois L, Le Bourhis AG, Gramet G, Rochet V, Doré J (2003) Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rRNA probes. FEMS Microbiol Ecol 43:237–245

    Article  CAS  Google Scholar 

  15. Rigottier-Gois L, Rochet V, Garrec N, Suau A, Dore J (2003) Enumeration of Bacteroides species in human faeces by fluorescent in situ hybridisation combined with flow cytometry using 16S rRNA probes. Syst Appl Microbiol 26:110–118

    Article  Google Scholar 

  16. Lay C, Rigottier-Gois L, Holmstrom K, et al. (2005) Colonic microbiota signatures across five northern Europe countries. Appl Environ Mibrobiol 71(7):4153–4155

    Article  CAS  Google Scholar 

  17. Sghir A, Gramet G, Suau A, Rochet V, Pochart P, Dore J (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66:2263–2266

    Article  CAS  Google Scholar 

  18. Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345

    CAS  Google Scholar 

  19. Bourlioux P, Koletzko B, Guarner F, Braesco V (2003) The intestine and its microflora are partners for the protection of the host: report on the Danone Symposium “The Intelligent Intestine,” held in Paris, June 14, 2002. Am J Clin Nutr 78:675–683

    CAS  Google Scholar 

  20. Harmsen HJ, Wildeboer-Veloo AC, Grijpstra J, Knol J, Degener JE, Welling GW (2000) Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 66(10):4523–4527

    Article  CAS  Google Scholar 

  21. Zoetendal EG, Akkermans AD, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859

    CAS  Google Scholar 

  22. Seksik P, Rigottier-Gois L, Gramet G, et al. (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut 52:237–242

    Article  CAS  Google Scholar 

  23. Spanhaak S, Havenaar R, Schaafsma G (1998) The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur J Clin Nutr 52:899–907

    Article  CAS  Google Scholar 

  24. Oozeer R, Mater DD, Goupil-Feuillerat N, Corthier G (2004) Initiation of protein synthesis by a labeled derivative of the Lactobacillus casei DN-114 001 strain during transit from the stomach to the cecum in mice harboring human microbiota. Appl Environ Microbiol 70:6992–6997

    Article  CAS  Google Scholar 

  25. Pochart P, Marteau P, Bouhnik Y, Goderel I, Bourlioux P, Rambaud JC (1992) Survival of bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion. Am J Clin Nutr 55:78–80

    CAS  Google Scholar 

  26. Marteau P, Pochart P, Bouhnik Y, Zidi S, Goderel I, Rambaud JC (1992) Survival of Lactobacillus acidophilus and Bifidobacterium sp. in the small intestine following ingestion in fermented milk. A rational basis for the use of probiotics in man. Gastroenterol Clin Biol 16:25–28

    CAS  Google Scholar 

  27. Duez H, et al. (2000) A colony-immunoblotting method for quantitative detection of a Bifidobacterium animalis probiotic strain in human faeces. J Appl Microbiol 88:1019–1027

    Article  CAS  Google Scholar 

  28. Vesa T, Pochart P, Marteau P (2000) Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract. Aliment Pharmacol Ther 14:823–828

    Article  CAS  Google Scholar 

  29. Bouhnik Y, Pochart P, Marteau P, Arlet G, Goderel I, Rambaud JC (1992) Fecal recovery in humans of viable Bifidobacterium sp ingested in fermented milk. Gastroenterology 102:875–878

    CAS  Google Scholar 

  30. Johansson ML, Nobaek S, Berggren A, et al. (1998) Survival of Lactobacillus plantarum DSM 9843 (299v), and effect on the short-chain fatty acid content of faeces after ingestion of a rose-hip drink with fermented oats. Int J Food Microbiol 42:29–38

    Article  CAS  Google Scholar 

  31. Adlerberth I, Ahrné SIV, Johansson ML, et al. (1996) A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl Environ Microbiol 62(7):2244–2251

    CAS  Google Scholar 

  32. Gibney MJ, Walsh M, Brennan L, Roche HM, German B, Van Ommen B (2005) Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr 82(3):497–503

    CAS  Google Scholar 

  33. Birt DF, Hendrich S, Wang W (2001) Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 90:157–177

    Article  CAS  Google Scholar 

  34. Adlercreutz H, Mazur W (1997) Phyto-oestrogens and Western diseases. Ann Med 29:95–120

    CAS  Google Scholar 

  35. Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci USA 101:4596–4601

    Article  CAS  Google Scholar 

  36. Backhed F, Ding H, Wang T, et al. (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723

    Article  CAS  Google Scholar 

  37. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884

    Article  CAS  Google Scholar 

  38. Oozeer R, Goupil-Feuillerat N, Alpert CA, et al. (2002) Lactobacillus casei is able to survive and initiate protein synthesis during its transit in the digestive tract of human flora-associated mice. Appl Environ Microbiol 68:3570–3574

    Article  CAS  Google Scholar 

  39. Oozeer R, Furet JP, Goupil-Feuillerat N, Anba J, Mengaud J, Corthier G (2005) Differential activities of four Lactobacillus casei promoters during bacterial transit through the gastrointestinal tracts of human-microbiota-associated mice. Appl Environ Microbiol 71:1356–1363

    Article  CAS  Google Scholar 

  40. Camilli A, Mekalanos JJ (1995) Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol Microbiol 18:671–683

    Article  CAS  Google Scholar 

  41. Angelichio MJ, Camilli A (2002) In vivo expression technology. Infect Immun 70:6518–6523

    Article  CAS  Google Scholar 

  42. Zoetendal EG, Akkermans AD, Akkermans-van Vliet WM, de Visser JAGM, de Vos WM (2001) The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 13:129–134

    Article  Google Scholar 

  43. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  CAS  Google Scholar 

  44. Xu J, Gordon JI (2003) Inaugural article: honor thy symbionts. Proc Natl Acad Sci USA 100:10452–10459

    Article  CAS  Google Scholar 

  45. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273

    Article  CAS  Google Scholar 

  46. Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA 99:15451–15455

    Article  CAS  Google Scholar 

  47. Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307

    Article  CAS  Google Scholar 

  48. Bry L, Falk PG, Midtvedt T, Gordon JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273:1380–1383

    Article  CAS  Google Scholar 

  49. Falk PG, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62:1157–1170

    CAS  Google Scholar 

  50. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307(5717):1955–1959

    Article  CAS  Google Scholar 

  51. Meydani SN, Ha WK (2000) Immunologic effects of yogurt. Am J Clin Nutr 71:861–872

    CAS  Google Scholar 

  52. Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E (2001) Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357:1076–1079

    Article  CAS  Google Scholar 

  53. Kalliomaki M, Salminen S, Poussa T, Arvilommi H, Isolauri E (2003) Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 361:1869–1871

    Article  Google Scholar 

  54. Merk M, Borelli C, Korting HC (2005) Lactobacilli – bacteria–host interactions with special regard to the urogenital tract. Int J Med Microbiol 295:9–18

    Article  CAS  Google Scholar 

  55. Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347:911–920

    Article  Google Scholar 

  56. Chapat L, Chemin K, Dubois B, Bourdet-Sicard R, Kaiserlian D (2004) Lactobacillus casei reduces CD8+ T cell-mediated skin inflammation. Eur J Immunol 34:2520–2528

    Article  CAS  Google Scholar 

  57. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241

    Article  CAS  Google Scholar 

  58. Madsen K, Cornish A, Soper P, et al. (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121:580–591

    Article  CAS  Google Scholar 

  59. Cario E, Gerken G, Podolsky DK (2004) Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127:224–238

    Article  CAS  Google Scholar 

  60. Yan F, Polk DB (2002) Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem 277:50959–50965

    Article  CAS  Google Scholar 

  61. Ma D, Forsythe P, Bienenstock J (2004) Live Lactobacillus reuteri is essential for the inhibitory effect on tumor necrosis factor alpha-induced interleukin-8 expression. Infect Immun 72:5308–5314

    Article  CAS  Google Scholar 

  62. Reid G, Jass J, Sebulsky MT, McCormick JK (2003) Potential uses of probiotics in clinical practice. Clin Microbiol Rev 16:658–672

    Article  Google Scholar 

  63. Adolfsson O, Meydani SN, Russell RM (2004) Yogurt and gut function. Am J Clin Nutr 80:245–256

    CAS  Google Scholar 

  64. Piaia M, Antoine JM, Mateos-Guardia JA, Leplingard A, Lenoir-Wijnkoop I (2003) Assessment of the benefits of live yogurt: methods and markers for in vivo studies of the physiological effects of yogurt cultures. Microb Ecol Health Dis 15:79–87

    Article  Google Scholar 

  65. Brownlee IA, Havler ME, Dettmar PW, Allen A, Pearson JP (2003) Colonic mucus: secretion and turnover in relation to dietary fibre intake. Proc Nutr Soc 62:245–249

    Article  CAS  Google Scholar 

  66. D’Souza AL, Rajkumar C, Cooke J, Bulpitt CJ (2002) Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis. BMJ 324:1361

    Article  Google Scholar 

  67. Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126:1620–1633

    Article  Google Scholar 

  68. Gionchetti P, Rizzello F, Venturi A, et al. (2000) Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 119:305–309

    Article  CAS  Google Scholar 

  69. Gionchetti P, Rizzello F, Helwig U, et al. (2003) Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial. Gastroenterology 124:1202–1209

    Article  Google Scholar 

  70. Mimura T, Rizzello F, Helwig U, et al. (2004) Once daily high dose probiotic therapy (VSL #3) for maintaining remission in recurrent or refractory pouchitis. Gut 53:108–114

    Article  CAS  Google Scholar 

  71. Kruis W, Schutz E, Fric P, Fixa B, Judmaier G, Stolte M (1997) Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 11:853–858

    Article  CAS  Google Scholar 

  72. Kruis W, Fric P, Pokrotnieks J, et al. (2004) Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53:1617–1623

    Article  CAS  Google Scholar 

  73. Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon AT (1999) Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet 354:635–639

    Article  CAS  Google Scholar 

  74. Prantera C, Scribano ML, Falasco G, Andreoli A, Luzi C (2002) Ineffectiveness of probiotics in preventing recurrence after curative resection for Crohn’s disease: a randomised controlled trial with Lactobacillus GG. Gut 51:405–409

    Article  CAS  Google Scholar 

  75. Steidler L, Hans W, Schotte L, et al. (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355

    Article  CAS  Google Scholar 

  76. Vandenbroucke K, Hans W, Van Huysse J, et al. (2004) Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127:502–513

    Article  CAS  Google Scholar 

  77. Koebnick C, Wagner I, Leitzmann P, Stern U, Zunft HJ (2003) Probiotic beverage containing Lactobacillus casei Shirota improves gastrointestinal symptoms in patients with chronic constipation. Can J Gastroenterol 17:655–659

    Google Scholar 

  78. Kim HJ, Camilleri M, McKinzie S, et al. (2003) A randomized controlled trial of a probiotic, VSL#3, on gut transit and symptoms in diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther 17:895–904

    Article  CAS  Google Scholar 

  79. Sen S, Mullan MM, Parker TJ, Woolner JT, Tarry SA, Hunter JO (2002) Effect of Lactobacillus plantarum 299v on colonic fermentation and symptoms of irritable bowel syndrome. Dig Dis Sci 47:2615–2620

    Article  CAS  Google Scholar 

  80. Madden JA, Hunter JO (2002) A review of the role of the gut microflora in irritable bowel syndrome and the effects of probiotics. Br J Nutr 88(Suppl 1):S67–S72

    Article  CAS  Google Scholar 

  81. Spiller RC (2003) Postinfectious irritable bowel syndrome. Gastroenterology 124:1662–1671

    Article  Google Scholar 

  82. Verdu EF, Bercik P, Bergonzelli GE, et al. (2004) Lactobacillus paracasei normalizes muscle hypercontractility in a murine model of postinfective gut dysfunction. Gastroenterology 127:826–837

    Article  CAS  Google Scholar 

  83. Bouvier M, Meance S, Bouley C, Berta JL, Grimaud C (2001) Effects of consumption of a milk fermented by the probiotic strain Bifidobacterium animalis DN-173 010 on colonic transit times in healthy humans. Biosci Microflora 20:43–48

    CAS  Google Scholar 

  84. Meance S, Cayuela C, Turchet P, Raimondi A, Lucas C, Antoine JM (2001) A fermented milk with a Bifidobacterium probiotic strain DN-173 010 shortened oro-fecal gut transit time in elderly. Microbiol Ecol Health Dis 13:217–222

    Article  Google Scholar 

  85. Meance S, Cayuela C, Turchet P, Raimondi A, Lucas C, Antoine JM (2003) Recent advances in the use of functional foods: effects of the commercial fermented milk with Bifidobacterium animalis strain DN-173 010 and yogurt strains on gut transit time in the elderly. Microbiol Ecol Health Dis 15:15–22

    Article  Google Scholar 

  86. Marteau P, Cuillerier E, Meance S, et al. (2002) Bifidobacterium animalis strain DN-173 010 shortens the colonic transit time in healthy women: a double-blind, randomized, controlled study. Aliment Pharmacol Ther 16:587–593

    Article  CAS  Google Scholar 

  87. Felley CP, Corthesy-Theulaz I, Rivero JL, et al. (2001) Favourable effect of an acidified milk (LC-1) on Helicobacter pylori gastritis in man. Eur J Gastroenterol Hepatol 13:25–29

    Article  CAS  Google Scholar 

  88. Wang KY, Li SN, Liu CS, et al. (2004) Effects of ingesting Lactobacillus- and Bifidobacterium-containing yogurt in subjects with colonized Helicobacter pylori. Am J Clin Nutr 80:737–741

    CAS  Google Scholar 

  89. Armuzzi A, Cremonini F, Bartolozzi F, et al. (2001) The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy. Aliment Pharmacol Ther 15:163–169

    Article  CAS  Google Scholar 

  90. Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52:988–997

    Article  CAS  Google Scholar 

  91. Freitas M, Tavan E, Thoreux K, Cayuela C, Sapin C, Trugnan G (2003) Lactobacillus casei DN-114 001 and Bacteroides thetaiotamicron VPI-5482 inhibit rotavirus infection by modulating apical glycosylation pattern of cultured human intestinal HT29-MTX cells. Gastroenterology 124(Suppl 1):A-475–A-476

    Google Scholar 

  92. McNaught CE, Woodcock NP, MacFie J, Mitchell CJ (2002) A prospective randomised study of the probiotic Lactobacillus plantarum 299V on indices of gut barrier function in elective surgical patients. Gut 51:827–831

    Article  CAS  Google Scholar 

  93. Anderson AD, McNaught CE, Jain PK, MacFie J (2004) Randomised clinical trial of synbiotic therapy in elective surgical patients. Gut 53:241–245

    Article  CAS  Google Scholar 

  94. Jain PK, McNaught CE, Anderson AD, MacFie J, Mitchell CJ (2004) Influence of synbiotic containing Lactobacillus acidophilus La5, Bifidobacterium lactis Bb 12, Streptococcus thermophilus, Lactobacillus bulgaricus and oligofructose on gut barrier function and sepsis in critically ill patients: a randomised controlled trial. Clin Nutr 23:467–475

    Article  Google Scholar 

  95. Olah A, Belagyi T, Issekutz A, Gamal ME, Bengmark S (2002) Randomized clinical trial of specific lactobacillus and fibre supplement to early enteral nutrition in patients with acute pancreatitis. Br J Surg 89:1103–1107

    Article  CAS  Google Scholar 

  96. Rayes N, Seehofer D, Hansen S, et al. (2002) Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients. Transplantation 74:123–127

    Article  Google Scholar 

  97. Agostoni C, Axelsson I, Braegger C, et al. (2004) Probiotic bacteria in dietetic products for infants: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 38:365–374

    Article  Google Scholar 

  98. Szajewska H, Mrukowicz JZ (2001) Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: a systematic review of published randomized, double-blind, placebo-controlled trials. J Pediatr Gastroenterol Nutr 33(Suppl 2):S17–S25

    Article  CAS  Google Scholar 

  99. Van Niel CW, Feudtner C, Garrison MM, Christakis DA (2002) Lactobacillus therapy for acute infectious diarrhea in children: a meta-analysis. Pediatrics 109:678–684

    Article  Google Scholar 

  100. Allen SJ, Okoko B, Martinez E, Gregorio G, Dans LF (2004) Probiotics for treating infectious diarrhoea. Cochrane Database Syst Rev (2):CD003048

    Google Scholar 

  101. Szajewska H, Kotowska M, Mrukowicz JZ, Armanska M, Mikolajczyk W (2001) Efficacy of Lactobacillus GG in prevention of nosocomial diarrhea in infants. J Pediatr 138:361–365

    Article  CAS  Google Scholar 

  102. Oberhelman RA, Gilman RH, Sheen P, et al. (1999) A placebo-controlled trial of Lactobacillus GG to prevent diarrhea in undernourished Peruvian children. J Pediatr 134:15–20

    Article  CAS  Google Scholar 

  103. Hatakka K, Savilahti E, Ponka A, et al. (2001) Effect of long term consumption of probiotic milk on infections in children attending day care centres: double blind, randomised trial. BMJ 322:1327

    Article  CAS  Google Scholar 

  104. Saavedra JM, Bauman NA, Oung I, Perman JA, Yolken RH (1994) Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet 344:1046–1049

    Article  CAS  Google Scholar 

  105. Mastretta E, Longo P, Laccisaglia A, et al. (2002) Effect of Lactobacillus GG and breast-feeding in the prevention of rotavirus nosocomial infection. J Pediatr Gastroenterol Nutr 35:527–531

    Article  Google Scholar 

  106. Kotowska M, Albrecht P, Szajewska H (2005) Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea in children: a randomized double-blind placebo-controlled trial. Aliment Pharmacol Ther 21:583–590

    Article  CAS  Google Scholar 

  107. Lu L, Walker WA (2001) Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am J Clin Nutr 73:1124S–1130S

    CAS  Google Scholar 

  108. Guandalini S (2002) Use of Lactobacillus-GG in paediatric Crohn’s disease. Dig Liver Dis 34(Suppl 2):S63–S65

    Article  Google Scholar 

  109. Sykora J, Valeekova KKV, Amlerova JJA, et al. (2004) Supplements of a one week triple drug therapy with special probiotic Lactobacillus casei immunitass (strain DN 114000) and Streptococcus thermophilus and Lactobacillus bulgaricus in the eradication of H. pylori-colonized children:a prospective randomised tr. J Pediatr Gastroenterol Nutr 39(S1):S400

    Google Scholar 

  110. Banaszkiewicz A, Szajewska H (2004) Ineffectiveness of Lactobacilllus GG for the treatment of functional constipation in children: a randomised double-blind placebo-controlled trial. J Pediatr Gastroenterol Nutr 39(S1):S67–S7

    Google Scholar 

  111. Bargaoui K (2004) Effect of Lactobacilllus acidophilus LB on intestinal microbial pullulation in childhood. J Pediatr Gastroenterol Nutr 39(S1):S401

    Google Scholar 

  112. Li Y, Shimizu T, Hosaka A, Kaneko N, Ohtsuka Y, Yamashiro Y (2004) Effects of Bifidobacterium breve supplementation on intestinal flora of low birth weight infants. Pediatr Int 46:509–515

    Article  Google Scholar 

  113. Zeisel SH (1999) Regulation of “nutraceuticals”. Science 285:1853–1855

    Article  CAS  Google Scholar 

  114. Jung LKL (1999) Lactobacillus GG augments the immune response to typhoid vaccination: a double-blinded placebo-controlled study. FASEB J 13:A872

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Antoine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, W., Goulet, O., Morelli, L. et al. Progress in the science of probiotics: from cellular microbiology and applied immunology to clinical nutrition. Eur J Nutr 45 (Suppl 1), 1–18 (2006). https://doi.org/10.1007/s00394-006-1101-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-006-1101-1

Keywords

Navigation