Skip to main content
Log in

Pathogene Zellen der rheumatischen Entzündung als Ziele moderner Therapien

Pathogenic cells of rheumatic inflammation as the target of modern therapies

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Das unzureichende Therapierepertoire für RA (rheumatoide Arthritis)-Patienten hat in den 80er-Jahren des letzten Jahrhunderts aufgrund zunehmender Erkenntnisse der der Krankheit zugrunde liegenden pathogenetischen Mechanismen zu der Entwicklung vielfacher neuer und biologischer Therapieverfahren geführt. Wie dargestellt, wurden in der Frühphase der Anwendung biologischer Medikationen zahlreiche zelluläre Strukturen für eine Intervention bei RA-Patienten getestet. Doch schaut man in der Übersicht der Therapieoptionen gerichtet gegen zelluläre Strukturen kritisch durch, so hat sich bei der T-Zell-gerichteten Therapie eine Blockade der Kostimulation durch Abatacept einen festen Platz im Therapierepertoire erworben. Gleiches gilt für B-Zell-gerichtete therapeutische Strategien. Auffallend ist, dass die in die Klinik eingeführten neuen Fusionsproteine sowie monoklonale Antikörper, auch die sog. „small molecules“, nicht bei allen Patienten mit einer RA zu dem gewünschten klinischen Erfolg führen, was es notwendig macht, weitere Therapieprinzipien zu entwickeln.

Abstract

In the 1970s and 1980s the course of rheumatoid arthritis (RA) could be defined as fateful despite the introduction of methotrexate as well as other immunosuppressive treatments. In most patients at this time RA was combined with an early disability due a progressive destruction of joints. In addition, comorbidity was known to be one of the major causes for a decreased life expectancy. These less than optimal options for treating RA patients led to intensive research in the pathogenesis with the aim to develop new treatment principles. Based on the increasing knowledge of pathogenically important mechanisms, so-called biologicals were developed targeting T and B cells and proinflammatory cytokines, such as tumor necrosis factor alpha. Over the past 10 years the repertoire of biologicals for treating RA has steadily and significantly increased, which was necessary especially for those patients classified as non-responders to available biological compounds. In the present overview cellular structures, T and B cells as well as cells of the monocyte/macrophage system are discussed as targets for immune interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Horneff G, Burmester G, Emmrich F et al (1991) Treatment of rheumatoid arthritis with an anti-CD4 monoclonal antibody. Arthritis Rheum 34:129–140

    Article  CAS  PubMed  Google Scholar 

  2. Gregersen PK, Silver J, Winchester R (1987) The shared epitope hypothesis. Arthritis Rheum 30:1205

    Article  CAS  PubMed  Google Scholar 

  3. Tarr G, Makada M, Musenge E et al (2014) Effect of human immunodeficiency virus infection on disease activity in rheumatoid arthritis: a retrospective study in South Africans. J Rheumatol 41:1645–1649

    Article  PubMed  Google Scholar 

  4. Herzog CH, Walker CH, Pichler W et al (1987) Monoclonal anti-CD4 in arthritis. Lancet II:1461–1462

    Article  Google Scholar 

  5. Horneff G, Emmrich F, Reiter C et al (1992) Persistent depletion of CD4+T cells and inversion of the CD4/CD8 T cell ratio induced by anti-CD4 therapy. J Rheumatol 19:1845–1850

    CAS  PubMed  Google Scholar 

  6. Horneff G, Emmrich F, Burmester GR (1993) Advances in immunotherapy of rheumatoid arthritis: clincial and immunological findings following treatment with anti-CD4 antibodies. Br J Rheum 32(Suppl 4):39–47

    Article  Google Scholar 

  7. Breedveld FC (1998) Monoclonal antibodies to CD4. Emerg Ther Rheum Arthritis 24:567–578

    CAS  Google Scholar 

  8. Lubbe PA van der, Reiter C, Breedveld FC et al (1993) Chimeric CD4 monoclonal antibody cM-T412 as a therapeutic approach to rheumatoid arthritis. Arthritis Rheum 36:1375

    Article  PubMed  Google Scholar 

  9. Moreland LW, Bucy RP, Tilden A et al (1993) Use of a chimeric monoclonal anti-CD4 antiboidy in patients with refractory rheumatoid arthritis. Arthritis Rheum 36:307

    Article  CAS  PubMed  Google Scholar 

  10. Lubbe PA van der, Dijkmans BAC, Markusse HM et al (1995) A randomized, double-blind, placebo-controlled study of CD4 monoclonal antibody therapy in early rheumatoid arthritis. Arthritis Rheum 38:1097

    Article  PubMed  Google Scholar 

  11. Choy EHS, Pitzalis C, Cauli A (1996) Percentage of anti-CD4 monoclonal antibody-coated lymphocytes in the rheumatoid joint is associated with clinical improvement. Arthritis Rheum 39:52–56

    Article  CAS  PubMed  Google Scholar 

  12. Broek MF van den, Langerijt LG van de, Bruggen MC van et al (1992) Treatment of rats with monoclonal anti-CD4 induces long-term resistance to streptococcal cell wall-induced arthritis. Eur J Immunol 22:57–61

    Article  PubMed  Google Scholar 

  13. Choy EHS (1998) New prospects for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 1087

  14. Masen U, Aldrich J, Breedveld FC et al (2002) CD4 coating, but not CD4 depletion, is a predictor of efficycy with primatized monoclonal anti-CD4 treatment of active rheumatoid arthritis. J Rheumatol 29:220–229

    Google Scholar 

  15. Scheerens H, Su Z, Irving B et al (2011) MTRX1011A, a humanized anti-CD4 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled study incorporating pharmacodynamic biomarker assessments. Arthrtis Res Ther 13:R177

    Article  CAS  Google Scholar 

  16. Panayi GS, Choy EHS, Connolly DJA (1996) T Cell hypothesis in rheumatoid arthritis (RA) tested by humanized non-depleting anti-CD4 mAB treatment. I: suppression of disease activity and acute phase response. Arthritis Rheum 39:S244

    Google Scholar 

  17. Choy EHS, Connolly DJA, Regan T et al (1996) T cell hypothsis in rheumatoid arthritis (RA) tested by humanized non-depleting anti-CD4 mAB treatment. II: clinical activity is related to pharmacodynamic effects. Arthritis Rheum 39:S244

    Article  Google Scholar 

  18. Elliott MJ, Maini RN, Feldmann M et al (1994) Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 344:1105–1110

    Article  CAS  PubMed  Google Scholar 

  19. Nash P, Nayiager S, Genovese MC et al (2013) Immunogenicity, safety, and efficacy of abatacept administered subcutaneously with or without background methotrexate in patients with rheumatoid arthritis: results from a phase III, international, multicenter, parallel-arm, open-label study. Arthritis Care Res (Hoboken) 5:718–728

    Article  Google Scholar 

  20. Westhovens R, Kremer JM, Emery P et al (2014) Long-term safety and efficacy of abatacept in patients with rheumatoid arthritis and an inadequate response to methotrexate: a 7-year extended study. Clin Exp Rheumatol 32:553–562

    PubMed  Google Scholar 

  21. Alten R, Kaine J, Keystone E et al (2014) Long-term safety of subcutaneous abatacept in rheumatoid arthritis: integrated analysis of clinical trial data representing more than four years of treatment. Arthritis Rheumatol 66:1987–1997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kremer JM, Russell AS, Abud-Mendoza C et al (2011) Long-term safety, efficacy and inhibition of radiographic progression with abatacept treatment in patients with rheumatoid arthritis and an inadequate response to methotrexate: 3-year results from the AM trial. Ann Rheum Dis 10:1826–1830

    Article  Google Scholar 

  23. Mease P, Genovese MC, Gladstein G et al (2011) Abatacept in the treatment of patients with psoriatic arthritis: results of a six-month, multicenter, randomized, double-blind, placebo-controlled, phase II trial. Arthritis Rheum 63:939–948

    Article  CAS  PubMed  Google Scholar 

  24. Genovese MC, Becker JC, Schiff M (2005) Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 11:1114–1123

    Article  Google Scholar 

  25. Mease PJ, Reich K (2009) Alefacept with methotrexate for treatment of psoriatic arthritis: open-label extension of a randomized, double-blind, placebo-controlled study. J Am Acad Dermatol 60:402–411

    Article  PubMed  Google Scholar 

  26. Lorenz HM, Kalden JR (2001) Neue Therapieentwicklungen in der Rheumatoiden Arthritis. Z Rheumatol 60:326–332

    Article  CAS  PubMed  Google Scholar 

  27. Sigidin YA, Loukina GV, Skurkovich SV et al (2000) Double-blind, placebo-controlled study of antibodies to interferon-gamma vs. antibodies to TNFalpha in rheumatoid arthritis. Arthritis Rheum 43:S290

    Google Scholar 

  28. Kavanaugh AF, Davis LS, Nichols et al (1994) Treatment of refractory rheumatoid arthritis with a monoclonal antibody to intercellular adhesion molecule I. Arthritis Rheum 37:992–999

    Article  CAS  PubMed  Google Scholar 

  29. Kirkham BW, Pitzalis C, Kingsley GH et al (1991) Monoclonal antibody treatment in rheumatoid arthritis: the clinical and immunological effects of a CD7 monoclonal antibody. Br J Rheumatol 30:459–463

    Article  CAS  PubMed  Google Scholar 

  30. Olsen NJ, Brooks RH, Cush JJ et al (1996) A double-blind, placebo-controlled study of anti-CD5 immunoconjugate in patients with rheumatoid arthritis. Arthritis Rheum 39:1102–1108

    Article  CAS  PubMed  Google Scholar 

  31. Sewell KL, Parker KC, Woodworth TG et al (1993) DAB486IL-2 fusion toxin in refractory rheumatoid arthritis. Arthritis Rheum 36:1223–1233

    Article  CAS  PubMed  Google Scholar 

  32. Moreland LW, Sewell KL, Trentham DE et al (1995) Interleukin-2 diphtheria fusion protein (DAB486IL-2) in refractory rheumatoid arthritis. Arthritis Rheum 38:1177–1186

    Article  CAS  PubMed  Google Scholar 

  33. Weinblatt ME, Maddison PJ, Bulpitt KJ et al (1995) CAMPATH-1, a Humanized monoclonal antibody, in refractory rheumatoid arthritis. Arthritis Rheum 38:1589–1594

    Article  CAS  PubMed  Google Scholar 

  34. Matteson EL, Yocum DE, St Clair W et al (1995) Treatment of active refractory rheumatoid arthritis with humanized monoclonal antibody CAMPATH-1H administered by daily subcutaneous injection. Arthritis Rheum 38:1187–1193

    Article  CAS  PubMed  Google Scholar 

  35. Maloney DG, Liles TM, Czerwinski DK et al (1994) Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84:2457–2466

    CAS  PubMed  Google Scholar 

  36. Edwards JCW, Cambridge G (1998) Rheumatoid arthritis: the predictable effect of small immune complexes in which antibody is also antigen. Br J Rheumatol 37:126–130

    Article  CAS  PubMed  Google Scholar 

  37. Edwards JCW, Leandro MJ, Cambrige G (2005) B lymphocyte depletion in rheumatoid arthritis: targeting of CD20. Curr Dir Autoimmun 8:175–192

    Article  CAS  PubMed  Google Scholar 

  38. De Vita S, Zaja F, Sacco S et al (2002) Efficacy of selective B cell blockade in the treatment of rheumatoid arthritis. Arthritis Rheum 46:2029–2033

    Article  Google Scholar 

  39. Neubert K, Meister S, Moser K et al (2008) The proteasome inhibitor bortezomib depletes plasma cells and protexts mice with lupus-like disease from nephritis. Nat Med 14:748–755

    Article  CAS  PubMed  Google Scholar 

  40. Allison AC, Ferluga J, Prydz H et al (1978) The role of macrophage activation in chronic inflammation. Agents Actions 8:27–35

    Article  CAS  PubMed  Google Scholar 

  41. Burmester GR, Stuhlmueller B, Keyszer G et al (1997) Mononuclear phagocytes and rheumatoid synovitis. Arthritis Rheum 40:5–18

    Article  CAS  PubMed  Google Scholar 

  42. Klareskog L, Forsum U, Kabelitz D et al (1982) Immune functions of human synovial cells: phenotyic and T cell regulatory properties of macrophage-like cells that express HLA-DR. Arthritis Rheum 25:488–501

    Article  CAS  PubMed  Google Scholar 

  43. Horneff G, Sach U, Kalden JR et al (1993) Reduction of monocyte-macrophage activation markers upon anti-CD4 treatment: decreased levels of IL-1, IL-6, neopterin and soluble CD14 in patients with rheumatoid arthritis. Clin Exp Immunol 91:207–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Hahn G, Stuhlmueller B, Hain N et al (1993) Modulation of monocyte activation in patients with rheumatoid arthritis by leukapheresis therapy. J Clin Invest 91:862–870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Arend WP (2002) The mode of action of cytokine inhibitors. J Rheumatol 29(Suppl 65):16–21

    Google Scholar 

  46. Haringman JJ, Gerlag DM, Zwinderman AH et al (2005) Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Ann Rheum Dis 38:2068–2072

    Google Scholar 

  47. Bell AL, Magill MK, McKane WR et al (1995) Measurement of colony-stimulating factors in synovial fluid: potential clinical value. Rheumatol Int 14:177–182

    Article  CAS  PubMed  Google Scholar 

  48. Fiehn C, Wermann M, Pezzutto A et al (1992) Plasma GM-CSF concentrations in rheuamatoid arthritis, systemic lupus erythematosus and spondyarthropathy. Z Rheumatol 51:121–126

    CAS  PubMed  Google Scholar 

  49. Burmester GR, Weinblatt ME, McInnes IB et al (2013) Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis. Ann Rheum Dis 72:1445–1452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Di Franco M, Gerardi MC, Lucchino B et al (2014) Mavrilimumab: an evidence based review of its potential in the treatment of rheumatoid arthritis. Core Evid 9:41–48

    Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J.R. Kalden gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.R. Kalden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalden, J. Pathogene Zellen der rheumatischen Entzündung als Ziele moderner Therapien. Z. Rheumatol. 74, 8–13 (2015). https://doi.org/10.1007/s00393-014-1437-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-014-1437-5

Schlüsselwörter

Keywords

Navigation