Skip to main content
Log in

Hochauflösende periphere quantitative CT (HR-pQCT)

Neue Einblicke in die Arthritis

High-resolution peripheral quantitative CT (HR-pQCT)

New insights into arthritis

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Die Detektion periartikulärer Knochenläsionen ist von grundsätzlicher Bedeutung bei der Diagnose und Therapieüberwachung chronisch entzündlicher Erkrankungen wie beispielsweise der rheumatoiden Arthritis (RA). Die hochauflösende periphere quantitative Computertomografie („high-resolution peripheral quantitative computed tomography“, „HR-pQCT“) wurde ursprünglich dazu entwickelt, die Knochenmikrostruktur zu analysieren. Dabei lag initial der Fokus auf Knochendichteparametern. Mit einer isotropen Voxelgröße von 82 µm ist die HR-pQCT jedoch auch hervorragend dafür geeignet, periartikuläre Knochenläsionen wie Erosionen, Osteophyten und Oberflächenveränderungen bei Arthritis quantitativ zu erfassen. Der vorliegende Beitrag wird sich mit den vielfältigen Einsatzmöglichkeiten dieser neuen Bildgebungsmodalität befassen und mit der Frage, inwiefern diese in Zukunft für die Rheumatologie von Nutzen sein könnte.

Abstract

The detection of periarticular bone lesions is of crucial importance in the diagnosis and treatment monitoring of chronic inflammatory diseases such as, but not limited to, rheumatoid arthritis (RA). High-resolution peripheral quantitative computed tomography (HR-pQCT) was initially developed for the meticulous assessment of bone microstructure with a focus on bone density parameters. With an isotropic voxel size of 82 µm HR-pQCT is, however, also well suited for quantitative evaluation of periarticular bone lesions, such as erosion, osteophytes as well as bone surface changes in arthritis. The present article gives an overview of the manifold possibilities of application of this novel imaging modality and addresses potential benefits of this technique for rheumatology in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Albrecht A, Finzel S, Englbrecht M et al (2012) The structural basis of MRI bone erosions: an assessment by microCT. Ann Rheum Dis [Epub ahead of print]

  2. Barnabe C, Feehan L (2012) High-resolution peripheral quantitative computed tomography imaging protocol for metacarpophalangeal joints in inflammatory arthritis: the SPECTRA collaboration. J Rheumatol 39:1494–1495

    Article  PubMed  Google Scholar 

  3. Boutroy S, Bouxsein Ml, Munoz F et al (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Article  CAS  PubMed  Google Scholar 

  4. Boutroy S, Vilayphiou N, Roux JP et al (2011) Comparison of 2D and 3D bone microarchitecture evaluation at the femoral neck, among postmenopausal women with hip fracture or hip osteoarthritis. Bone 49:1055–1061

    Article  PubMed  Google Scholar 

  5. Burghardt AJ, Kazakia GJ, Ramachandran S et al (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25:983–993

    Article  PubMed  Google Scholar 

  6. Burghardt AJ, Pialat JB, Kazakia GJ et al (2013) Multi-center precision of cortical and trabecular bone quality measures assessed by HR-PQCT. J Bone Miner Res 28(3):524–536

    Article  PubMed  Google Scholar 

  7. Conaghan P, Bird P, Ejbjerg B et al (2005) The EULAR-OMERACT rheumatoid arthritis MRI reference image atlas: the metacarpophalangeal joints. Ann Rheum Dis 64(Suppl 1):i11–i21

    Article  PubMed  Google Scholar 

  8. Dohn UM, Ejbjerg BJ, Hasselquist M et al (2007) Rheumatoid arthritis bone erosion volumes on CT and MRI: reliability and correlations with erosion scores on CT, MRI and radiography. Ann Rheum Dis 66:1388–1392

    Article  PubMed  Google Scholar 

  9. Finzel S, Englbrecht M, Engelke K et al (2011) A comparative study of periarticular bone lesions in rheumatoid arthritis and psoriatic arthritis. Ann Rheum Dis 70:122–127

    Article  PubMed  Google Scholar 

  10. Finzel S, Kraus S, Schmidt S et al (2012) Bone anabolic changes progress in psoriatic arthritis patients despite treatment with methotrexate or tumour necrosis factor inhibitors. Ann Rheum Dis [Epub ahead of print]

  11. Finzel S, Ohrndorf S, Englbrecht M et al (2011) A detailed comparative study of high-resolution ultrasound and micro-computed tomography for detection of arthritic bone erosions. Arthritis Rheum 63:1231–1236

    Article  PubMed  Google Scholar 

  12. Finzel S, Rech J, Schmidt S et al (2013) Interleukin-6 receptor blockade induces limited repair of bone erosions in rheumatoid arthritis: a micro CT study. Ann Rheum Dis 72(3):396–400

    Article  CAS  PubMed  Google Scholar 

  13. Finzel S, Rech J, Schmidt S et al (2011) Repair of bone erosions in rheumatoid arthritis treated with tumour necrosis factor inhibitors is based on bone apposition at the base of the erosion. Ann Rheum Dis 70:1587–1593

    Article  CAS  PubMed  Google Scholar 

  14. Fouque-Aubert A, Boutroy S, Marotte H et al (2010) Assessment of hand bone loss in rheumatoid arthritis by high-resolution peripheral quantitative CT. Ann Rheum Dis 69:1671–1676

    Article  PubMed  Google Scholar 

  15. Kazakia GJ, Burghardt AJ, Link TM et al (2011) Variations in morphological and biomechanical indices at the distal radius in subjects with identical BMD. J Biomech 44:257–266

    Article  PubMed  Google Scholar 

  16. Krug R, Burghardt AJ, Majumdar S et al (2010) High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am 48:601–621

    Article  PubMed  Google Scholar 

  17. Liu Xs, Cohen A, Shane E et al (2010) Bone density, geometry, microstructure, and stiffness: relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J Bone Miner Res 25:2229–2238

    Article  PubMed  Google Scholar 

  18. Macdonald HM, Nishiyama KK, Hanley DA et al (2011) Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18 months of teriparatide therapy in postmenopausal women with osteoporosis. Osteoporos Int 22:357–362

    Article  CAS  PubMed  Google Scholar 

  19. Macneil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29:1096–1105

    Article  PubMed  Google Scholar 

  20. Macneil JA, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42:1203–1213

    Article  PubMed  Google Scholar 

  21. Macneil JA, Boyd SK (2008) Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 30:792–799

    Article  PubMed  Google Scholar 

  22. Mckay H, Liu D, Egeli D et al (2011) Physical activity positively predicts bone architecture and bone strength in adolescent males and females. Acta Paediatr 100:97–101

    Article  PubMed  Google Scholar 

  23. Muller R, Hildebrand T, Ruegsegger P (1994) Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Phys Med Biol 39:145–164

    Article  CAS  PubMed  Google Scholar 

  24. Nishiyama KK, Macdonald HM, Moore SA et al (2012) Cortical porosity is higher in boys compared with girls at the distal radius and distal tibia during pubertal growth: an HR-pQCT study. J Bone Miner Res 27:273–282

    Article  PubMed  Google Scholar 

  25. Stach CM, Bauerle M, Englbrecht M et al (2010) Periarticular bone structure in rheumatoid arthritis patients and healthy individuals assessed by high-resolution computed tomography. Arthritis Rheum 62:330–339

    PubMed  Google Scholar 

  26. Van Der Heijde D, Landewe R, Baraliakos X et al (2008) Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum 58:3063–3070

    Article  Google Scholar 

  27. Van Der Heijde D, Landewe R, Boonen A et al (2007) Expert agreement confirms that negative changes in hand and foot radiographs are a surrogate for repair in patients with rheumatoid arthritis. Arthritis Res Ther 9:R62

    Article  Google Scholar 

  28. Van Der Heijde D, Landewe R, Einstein S et al (2008) Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum 58:1324–1331

    Article  Google Scholar 

  29. Zhu TY, Griffith JF, Qin L et al (2012) Structure and strength of the distal radius in female patients with rheumatoid arthritis: a case-control study. J Bone Miner Res [Epub ahead of print]

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt für sich und ihre Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Finzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finzel, S., Rech, J. & Kleyer, A. Hochauflösende periphere quantitative CT (HR-pQCT). Z. Rheumatol. 72, 129–136 (2013). https://doi.org/10.1007/s00393-012-1067-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-012-1067-8

Schlüsselwörter

Keywords

Navigation