Skip to main content
Log in

Arthrosen bei hereditären Stoffwechselerkrankungen

Osteoarthritis in hereditary metabolic diseases

  • CME Weiterbildung · Zertifizierte Fortbildung
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Arthrosen der peripheren Gelenke sind sehr häufige Erkrankungen und betreffen hauptsächlich Menschen ab dem 50. Lebensjahr. Es ist wichtig, primäre von sekundären Arthrosen abzugrenzen. Ein Auftreten in jungem Lebensalter, ungewöhnliche Krankheitsmanifestationen, eine rasche Progression und Begleiterkrankungen sollten zu einer kritischen Hinterfragung der Diagnose primäre Arthrose führen. Dieser Übersichtsartikel fasst eine wichtige Gruppe der sekundären Arthrosen zusammen. Hereditäre Stoffwechselerkrankungen können eine Gelenkbeteiligung aufweisen. Für einige von ihnen ist eine korrekte Diagnosestellung von außerordentlicher Relevanz, da eine adäquate Therapie nicht nur Gelenkfunktion und Lebensqualität beeinflusst, sondern auch relevante Endorganschäden verhindern kann.

Abstract

Primary osteoarthritis (OA) of peripheral joints is a common disease mainly occurring after the age of 50. It is important to distinguish primary from secondary OA. Younger age at disease onset, rapid progression, unusual disease manifestations and co-morbidities are signs of secondary OA. This review outlines an important group of secondary OA. Hereditary metabolic diseases can exhibit joint involvement. For some of these diseases, correct diagnosis is critical, since appropriate therapy influences not only joint function and quality of life, but can also prevent relevant end-organ damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Datz C, Lalloz MR, Vogel W et al (1997) Predominance of the HLA-H Cys282Tyr mutation in Austrian patients with genetic haemochromatosis. J Hepatol 27(5):773–779

    Article  CAS  PubMed  Google Scholar 

  2. Wallace DF, Subramaniam VN (2007) Non-HFE haemochromatosis. World J Gastroenterol 13(35):4690–4698

    CAS  PubMed  Google Scholar 

  3. Wallace DF, Pedersen P, Dixon JL et al (2002) Novel mutation in ferroportin1 is associated with autosomal dominant hemochromatosis. Blood 100(2):692–694

    Article  CAS  PubMed  Google Scholar 

  4. Griffiths WJ (2007) Review article: the genetic basis of haemochromatosis. Aliment Pharmacol Ther 26(3):331–342

    CAS  PubMed  Google Scholar 

  5. Gurrin LC, Bertalli NA, Dalton GW et al (2009) HFE C282Y/H63D compound heterozygotes are at low risk of hemochromatosis-related morbidity. Hepatology 50(1):94–101

    Article  CAS  PubMed  Google Scholar 

  6. Holmstrom P, Marmur J, Eggertsen G et al (2002) Mild iron overload in patients carrying the HFE S65C gene mutation: a retrospective study in patients with suspected iron overload and healthy controls. Gut 51(5):723–730

    Article  CAS  PubMed  Google Scholar 

  7. Mura C, Raguenes O, Ferec C (1999) HFE mutations analysis in 711 hemochromatosis probands: evidence for S65C implication in mild form of hemochromatosis. Blood 93(8):2502–2505

    CAS  PubMed  Google Scholar 

  8. Ludwiczek S, Theurl I, Bahram S et al (2005) Regulatory networks for the control of body iron homeostasis and their dysregulation in HFE mediated hemochromatosis. J Cell Physiol 204(2):489–499

    Article  CAS  PubMed  Google Scholar 

  9. Pantopoulos K (2008) Function of the hemochromatosis protein HFE: Lessons from animal models. World J Gastroenterol 14(45):6893–6901

    Article  CAS  PubMed  Google Scholar 

  10. Vujic Spasic M, Kiss J, Herrmann T et al (2007) Physiologic systemic iron metabolism in mice deficient for duodenal Hfe. Blood 109(10):4511–4517

    Article  CAS  Google Scholar 

  11. Vujic Spasic M, Kiss J, Herrmann T et al (2008) Hfe acts in hepatocytes to prevent hemochromatosis. Cell Metab 7(2):173–178

    Article  CAS  Google Scholar 

  12. Ismail MK, Martinez-Hernandez A, Schichman S et al (2009) Transplantation of a liver with the C282Y mutation into a recipient heterozygous for H63D results in iron overload. Am J Med Sci 337(2):138–142

    Article  PubMed  Google Scholar 

  13. Schmidt PJ, Toran PT, Giannetti AM et al (2008) The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab 7(3):205–214

    Article  PubMed  CAS  Google Scholar 

  14. Wallace DF, Summerville L, Crampton EM et al (2009) Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology 50(6):1992–2000

    Article  CAS  PubMed  Google Scholar 

  15. Nicolas G, Bennoun M, Devaux I et al (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A 98(15):8780–8785

    Article  CAS  PubMed  Google Scholar 

  16. Bridle KR, Frazer DM, Wilkins SJ et al (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361(9358):669–673

    Article  CAS  PubMed  Google Scholar 

  17. Niederau C, Fischer R, Sonnenberg A et al (1985) Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N Engl J Med 313(20):1256–1262

    Article  CAS  PubMed  Google Scholar 

  18. Waalen J, Nordestgaard BG, Beutler E (2005) The penetrance of hereditary hemochromatosis. Best Pract Res Clin Haematol 18(2):203–220

    Article  CAS  PubMed  Google Scholar 

  19. Diwakaran HH, Befeler AS, Britton RS et al (2002) Accelerated hepatic fibrosis in patients with combined hereditary hemochromatosis and chronic hepatitis C infection. J Hepatol 36(5):687–691

    Article  CAS  PubMed  Google Scholar 

  20. Allen KJ, Gurrin LC, Constantine CC et al (2008) Iron-overload-related disease in HFE hereditary hemochromatosis. N Engl J Med 358(3):221–230

    Article  CAS  PubMed  Google Scholar 

  21. McNeil LW, McKee LC Jr, Lorber D, Rabin D (1983) The endocrine manifestations of hemochromatosis. Am J Med Sci 285(3):7–13

    Article  CAS  PubMed  Google Scholar 

  22. Schumacher HR Jr (1964) Hemochromatosis and arthritis. Arthritis Rheum 7:41–50

    Article  PubMed  Google Scholar 

  23. Schumacher HR, Straka PC, Krikker MA, Dudley AT (1988) The arthropathy of hemochromatosis. Recent studies. Ann N Y Acad Sci 526:224–233

    Article  CAS  PubMed  Google Scholar 

  24. Carlsson A (2009) Hereditary hemochromatosis: a neglected diagnosis in orthopedics: a series of 7 patients with ankle arthritis, and a review of the literature. Acta Orthop 80(3):371–374

    Article  PubMed  Google Scholar 

  25. Jager HJ, Mehring U, Gotz GF et al (1997) Radiological features of the visceral and skeletal involvement of hemochromatosis. Eur Radiol 7(8):1199–1206

    Article  CAS  PubMed  Google Scholar 

  26. Atkins CJ, McIvor J, Smith PM et al (1970) Chondrocalcinosis and arthropathy: Studies in haemochromatosis and in idiopathic chondrocalcinosis. Q J Med 39(153):71–82

    CAS  PubMed  Google Scholar 

  27. Axford JS, Bomford A, Revell P et al (1991) Hip arthropathy in genetic hemochromatosis. Radiographic and histologic features. Arthritis Rheum 34(3):357–361

    Article  CAS  PubMed  Google Scholar 

  28. Muirden KD, Senator GB (1968) Iron in the synovial membrane in rheumatoid arthritis and other joint diseases. Ann Rheum Dis 27(1):38–48

    Article  CAS  PubMed  Google Scholar 

  29. Ruiz Heiland G, Aigner E, Dallos T et al (2009) Synovial immunopathology in hemochromatosis arthropathy. Ann Rheum Dis

  30. Messer JG, Kilbarger AK, Erikson KM, Kipp DE (2009) Iron overload alters iron-regulatory genes and proteins, down-regulates osteoblastic phenotype, and is associated with apoptosis in fetal rat calvaria cultures. Bone 45(5):972–979

    Article  CAS  PubMed  Google Scholar 

  31. Delius S von, Lersch C, Schulte-Frohlinde E et al (2006) Hepatocellular carcinoma associated with hereditary hemochromatosis occurring in non-cirrhotic liver. Z Gastroenterol 44(1):39–42

    Article  Google Scholar 

  32. Elmberg M, Hultcrantz R, Ebrahim F et al (2009) Increased mortality risk in patients with phenotypic hereditary hemochromatosis but not in their first-degree relatives. Gastroenterology 137(4):1301–1309

    Article  PubMed  Google Scholar 

  33. Ferenci P (2006) Regional distribution of mutations of the ATP7B gene in patients with Wilson disease: Impact on genetic testing. Hum Genet 120(2):151–159

    Article  CAS  PubMed  Google Scholar 

  34. Ferenci P, Caca K, Loudianos G et al (2003) Diagnosis and phenotypic classification of Wilson disease. Liver Int 23(3):139–142

    Article  PubMed  Google Scholar 

  35. Kramer U, Weinberger A, Yarom R et al (1993) Synovial copper deposition as a possible explanation of arthropathy in Wilson’s disease. Bull Hosp Jt Dis 52(2):46–49

    CAS  PubMed  Google Scholar 

  36. Vilboux T, Kayser M, Introne W et al (2009) Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria. Hum Mutat 30(12):1611–1619

    Article  CAS  PubMed  Google Scholar 

  37. Borman P, Bodur H, Ciliz D (2002) Ochronotic arthropathy. Rheumatol Int 21(5):205–209

    Article  PubMed  Google Scholar 

  38. Zhao BH, Chen BC, Shao de C, Zhang Q (2009) Osteoarthritis? Ochronotic arthritis! A case study and review of the literature. Knee Surg Sports Traumatol Arthrosc 17(7):778–781

    Article  PubMed  Google Scholar 

  39. Effelsberg NM, Hugle T, Walker UA (2010) A metabolic cause of spinal deformity. Metabolism 59(1):140–143

    Article  CAS  PubMed  Google Scholar 

  40. Mannoni A, Selvi E, Lorenzini S et al (2004) Alkaptonuria, ochronosis, and ochronotic arthropathy. Semin Arthritis Rheum 33(4):239–248

    Article  PubMed  Google Scholar 

  41. McKee S, Pendleton A, Dixey J et al (2004) Autosomal dominant early childhood seizures associated with chondrocalcinosis and a mutation in the ANKH Gene. Epilepsia 45(10):1258–1260

    Article  CAS  PubMed  Google Scholar 

  42. Pendleton A, Johnson MD, Hughes A et al (2002) Mutations in ANKH cause chondrocalcinosis. Am J Hum Genet 71(4):933–940

    Article  PubMed  Google Scholar 

  43. Williams CJ, Zhang Y, Timms A et al (2002) Autosomal dominant familial calcium pyrophosphate dihydrate deposition disease is caused by mutation in the transmembrane protein ANKH. Am J Hum Genet 71(4):985–991

    Article  PubMed  Google Scholar 

  44. Knoers NV, Levtchenko EN (2008) Gitelman syndrome. Orphanet J Rare Dis 3:22

    Article  PubMed  Google Scholar 

  45. Ea HK, Blanchard A, Dougados M, Roux C (2005) Chondrocalcinosis secondary to hypomagnesemia in Gitelman’s syndrome. J Rheumatol 32(9):1840–1842

    PubMed  Google Scholar 

  46. Volpe A, Caramaschi P, Thalheimer U et al (2007) Familiar association of Gitelman’s syndrome and calcium pyrophosphate dihydrate crystal deposition disease – a case report. Rheumatology (Oxford) 46(9):1506–1508

    Google Scholar 

  47. Chuck AJ, Pattrick MG, Hamilton E et al (1989) Crystal deposition in hypophosphatasia: a reappraisal. Ann Rheum Dis 48(7):571–576

    Article  CAS  PubMed  Google Scholar 

  48. Beutler E, Felitti VJ, Koziol JA et al (2002) Penetrance of 845G--> A (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet 359(9302):211–218

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zwerina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwerina, J., Dallos, T. Arthrosen bei hereditären Stoffwechselerkrankungen. Z. Rheumatol. 69, 227–236 (2010). https://doi.org/10.1007/s00393-009-0590-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-009-0590-8

Schlüsselwörter

Keywords

Navigation