Skip to main content
Log in

The LQT syndromes – current status of molecular mechanisms

  • Übersicht
  • Published:
Zeitschrift für Kardiologie Aims and scope Submit manuscript

Zusammenfassung

Molekulargenetische Erkenntnisse bei angeborenen Herzrhythmusstörungen wurden, im Vergleich beispielsweise zu den familiären Kardiomyopathien, relativ spät bekannt, was zu einem Teil auf eine hohe Sterblichkeit und einen frühzeitigen Krankheitsbeginn dieser Erkrankungen zurückzuführen ist. Die Durchführung von genetischen Kopplungsanalysen, für die große Familien mit vielen Merkmalsträgern notwendig sind, war zunächst erschwert.

1991 wurde erstmals ein Genort auf dem Chromosom 11p15.5 beschrieben, der mit angeborenem QT-Syndrom assoziiert ist. Das ursächliche Gen KCNQ1, das eine Untereinheit eines Kaliumkanals kodiert, wurde erst 1996 identifiziert. Ferner wurden vier weitere Genloci für QT-Syndrom beschrieben und an drei von vier Mutationen in Genen, die Ionenkanaluntereinheiten kodieren, identifiziert. Zusammenfassend ist das QT-Syndrom eine genetisch heterogene Krankheit kardialer Ionenkanäle.

Die Kenntnis der verursachenden Gene für QT-Syndrom hat außerdem zur Identifizierung wichtiger Komponenten geführt, die Ionenströme regulieren und an der Repolarisation beteiligt sind. Mittels In-vitro-Expression wurde gezeigt, daß die strukturell veränderten Ionenkanäle entweder eine Reduktion des Kaliumstromes I (K) während der Phase III des Aktionspotentials oder einen veränderten Natriumstrom während der Phase 0 bedingen.

Mittlerweile ist die genomische Struktur der vier LQT-Gene fast vollständig bekannt; Mutationsdetektion mittels SSCP-Analysen und anschließender Sequenzierung hat das diagnostische Spektrum für diese Erkrankung erweitert und ist besonders bei der Diagnosestellung von Patienten, die keine eindeutigen EKG-Veränderungen haben, hilfreich. Die Kenntnis der krankheitsursächlichen Mutation ermöglicht eine präsymptomatische Diagnostik innerhalb einer betroffenen Familie. Derzeit werden Genotyp-Phänotyp-Untersuchungen durchgeführt, um die Penetranz und klinische Expressivität der Erkrankung zu bestimmen und weiteren Aufschlußüber inter- und intrafamiliäre Unterschiede in der Krankheitsmanifestation zu bekommen.

In diesem Kapitel wird der jetzige Stand der Molekulargenetik, Elektrophysiologie und klinischen, genotypbezogenen Untersuchungen dargestellt.

Summary

Our knowledge on the molecular genetics of inherited cardiac arrhythmias is very recent in comparison to the advances of genetics achieved in other inherited cardiac disorders. This is related to the high mortality and early disease onset of these arrhythmias resulting in mostly small nucleus families. Thus, traditional genetic linkage studies that are based on the genetic information obtained from large multi-generation families were made difficult.

In 1991, the first chromosomal locus for congenital long-QT (LQT) syndrome was identified on chromosome 11p15.5 (LQT1 locus) by linkage analysis. Meanwhile, the disease-causing gene at the LQT1 locus (KCNQ1), a gene encoding a K+ channel subunit of the IKs channel, and three other, major genes, all encoding cardiac ion channel components, have been identified. Taken together, LQT syndrome turned out to be a heterogeneous channelopathy. Moreover, the power of linkage studies to reveal the genetic causes of the LQT syndrome was also important to identify unknown but fundamental channel components that contribute to the ion currents tuning ventricular repolarization. In-vitro-expression of the altered ion channel genes demonstrated in each case that the altered ion channel function produces prolongation of the action potential and thus the increasing propensity to ventricular tachyarrhythmias. Since these ion channels are pharmacological targets of many antiarrhythmic (and other) drugs, individual and potentially deleterious drug responses may be related to genetic variation in ion channel genes. Very recently, also in acquired LQT syndrome, which is a frequent clinical disorder in cardiology a genetic basis has been proposed in part since mutations in LQT genes have been specifically found.

The discovery of ion channel defects in LQT syndrome represents the major achievement in our understanding and implies potential therpeutic options. The knowledge of the genomic structure of the LQT genes now offers the possibility to detect the underlying genetic defect in 80–90% of all patients. With this specific information, containing the type of ion channel (Na+ versus K+ channel) and electrophysiological alteratio n by the mutation (loss-of-function versus change-of-function mutation), gene-directed, elective drug therapies have been initiated in genotyped LQT patients. Based on preliminary data, that were supported by in vitro studies, this approach may be useful in recompensating the characteristic phenotypes in some LQT patients.

Mutation detection is a new diagnostic tool which may become of more increasing importance in patients with a normal QTc or just a borderline prolongation of the QTc interval at presentation. These patients represent approximately 40% of all familial cases. Moreover, LQT3 syndrome and idiopathic ventricular fibrillation are allelic disorders and genetically overlap. In both mutations in the LQT3 gene SCN5A encoding the Na+ channel alpha-subunit for INa have been reported. Thus, the clinical nosology of inherited arrhythmias may be reconsidered after elucidation of the underlying molecular bases.

Meanwhile, genotype-phenotype correlation in large families are on the way to evaluate intergene, interfamilial, and intrafamilial differences in the clinical phenotype reflecting gene specific, gene-site specific, and individual consequences of a given mutation. LQT syndrome is phenotypically heterogeneous due to the reduced penetrance and variable expressivity associated with the mutations.

This paper discusses the current data on molecular genetics and genotype-phenotype correlations and the implications for diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Author information

Authors and Affiliations

Authors

Additional information

Received: 15 October 1998, Accepted: 24 October 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze-Bahr, E., Wedekind, H., Haverkamp, W. et al. The LQT syndromes – current status of molecular mechanisms. Z Kardiol 88, 245–254 (1999). https://doi.org/10.1007/s003920050283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003920050283

Navigation