Skip to main content

Advertisement

Log in

Safety and efficacy of new potassium binders on hyperkalemia management in patients with heart failure: a systematic review and meta-analysis of randomized controlled trials

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Hyperkalemia leads to suboptimal use of evidence-based therapies in patients with heart failure (HF). Therefore, we aimed to assess whether new potassium binders are effective and safe to promote medical optimization in patients with HF.

Methods

MEDLINE, Cochrane, and Embase were searched for randomized controlled trials (RCTs) that reported outcomes after initiation of Patiromer or Sodium Zirconium Cyclosilicate (SZC) versus placebo in patients with HF at high risk of hyperkalemia development. Risk ratios (RR) with 95% confidence intervals (CI) were pooled with a random effects model. Quality assessment and risk of bias were performed according to Cochrane recommendations.

Results

A total of 1432 patients from 6 RCTs were included, of whom 737 (51.5%) patients received potassium binders. In patients with HF, potassium binders increased the use of renin–angiotensin–aldosterone inhibitors (RR 1.14; 95% CI 1.02–1.28; p = 0.021; I2 = 44%) and reduced the risk of hyperkalemia (RR 0.66; 95% CI 0.52–0.84; p < 0.001; I2 = 46%). The risk of hypokalemia was significantly increased in patients treated with potassium binders (RR 5.61; 95% CI 1.49–21.08; p = 0.011; I2 = 0%). There was no difference between groups in all-cause mortality rates (RR 1.13; 95% CI 0.59–2.16; p = 0.721; I2 = 0%) or in adverse events leading to drug discontinuation (RR 1.08; 95% CI 0.60–1.93; p = 0.801; I2 = 0%).

Conclusion

The use of new potassium binders Patiromer or SZC in patients with HF at risk for hyperkalemia increased the rates of medical therapy optimization with renin–angiotensin–aldosterone inhibitors and reduced the incidence of hyperkalemia, at the cost of an increased prevalence of hypokalemia.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data underlying this article are available in the article and in Supplementary material online.

Abbreviations

ACEi:

Angiotensin-Converting Enzyme inhibitors

ARB:

Angiotensin Receptor Blockers

ARNI:

Angiotensin receptor-neprilysin inhibitors

CI:

Confidence interval

CKD:

Chronic kidney disease

Em:

Resting membrane potential

eGFR:

Estimated glomerular filtration rate (eGFR)

HF:

Heart failure

LVEF:

Left ventricular ejection fraction

MRA:

Mineralocorticoid receptor antagonist

OR:

Odds ratio

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analysis

RAASi:

Renin–Angiotensin–Aldosterone System inhibitors

RCT:

Randomized controlled trials

RoB2:

Cochrane tool for assessing risk of bias in randomized trials

SZC:

Sodium Zirconium Cyclosilicate

References

  1. Pitt B, Zannad F, Remme WJ et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 341(10):709–717. https://doi.org/10.1056/NEJM199909023411001

    Article  CAS  PubMed  Google Scholar 

  2. Ay J, Ohn NC, Ianni G et al (2001) A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345(23):1667–1675. https://doi.org/10.1056/NEJMOA010713

    Article  Google Scholar 

  3. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;316(23):1429–1435. doi:https://doi.org/10.1056/NEJM198706043162301

  4. McMurray JJV, Packer M, Desai AS et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 371(11):132–133. https://doi.org/10.1056/NEJMOA1409077

    Article  Google Scholar 

  5. Heidenreich PA, Bozkurt B, Aguilar D et al (2022) 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: a Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145(18):E895–E1032. https://doi.org/10.1161/CIR.0000000000001063

    Article  PubMed  Google Scholar 

  6. McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42(36):3599–3726. https://doi.org/10.1093/EURHEARTJ/EHAB368

    Article  CAS  PubMed  Google Scholar 

  7. Raebel MA (2012) Hyperkalemia associated with use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. Cardiovasc Ther 30(3):e156–e166. https://doi.org/10.1111/J.1755-5922.2010.00258.X

    Article  CAS  PubMed  Google Scholar 

  8. Ingelfinger JR (2015) A new era for the treatment of hyperkalemia? N Engl J Med 372(3):275–277. https://doi.org/10.1056/NEJME1414112/SUPPL_FILE/NEJME1414112_DISCLOSURES.PDF

    Article  PubMed  Google Scholar 

  9. Weiss JN, Qu Z, Shivkumar K (2017) Electrophysiology of hypokalemia and hyperkalemia. Circ Arrhythm Electrophysiol. https://doi.org/10.1161/CIRCEP.116.004667

    Article  PubMed  PubMed Central  Google Scholar 

  10. Linder KE, Krawczynski MA, Laskey D (2016) Sodium zirconium cyclosilicate (ZS-9): a novel agent for the treatment of hyperkalemia. Pharmacotherapy 36(8):923–933. https://doi.org/10.1002/PHAR.1797

    Article  CAS  PubMed  Google Scholar 

  11. Colbert GB, Patel D, Lerma EV (2020) Patiromer for the treatment of hyperkalemia. Expert Rev Clin Pharmacol. 13(6):563–570. https://doi.org/10.1080/17512433.2020.1774363

    Article  CAS  PubMed  Google Scholar 

  12. Kim K, Fagerström J, Chen G, Lagunova Z, Furuland H, McEwan P (2022) Cost effectiveness of sodium zirconium cyclosilicate for the treatment of hyperkalaemia in patients with CKD in Norway and Sweden. BMC Nephrol 23(1):1–11. https://doi.org/10.1186/S12882-022-02903-7

    Article  CAS  Google Scholar 

  13. Montagnani A, Frasson S, Gussoni G, Manfellotto D (2021) Optimization of RAASi therapy with new potassium binders for patients with heart failure and hyperkalemia: rapid review and meta-analysis. J Clin Med. https://doi.org/10.3390/JCM10235483

    Article  PubMed  PubMed Central  Google Scholar 

  14. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. https://doi.org/10.1136/BMJ.N71

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sterne JAC, Savović J, Page MJ et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. https://doi.org/10.1136/BMJ.L4898

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rossignol P, Williams B, Mayo MR et al (2020) Patiromer versus placebo to enable spironolactone use in patients with resistant hypertension and chronic kidney disease (AMBER): results in the pre-specified subgroup with heart failure. Eur J Heart Fail 22(8):1462–1471. https://doi.org/10.1002/ejhf.1860

    Article  CAS  PubMed  Google Scholar 

  17. Butler J, Anker SD, Lund LH et al (2022) Patiromer for the management of hyperkalemia in heart failure with reduced ejection fraction: the DIAMOND trial. Eur Heart J. https://doi.org/10.1093/eurheartj/ehac401. ((Butler J.; Siddiqi T.J.) Department of Medicine, University of Mississippi, Jackson, MS, United States)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Anker SD, Kosiborod M, Zannad F et al (2015) Maintenance of serum potassium with sodium zirconium cyclosilicate (ZS-9) in heart failure patients: Results from a phase 3 randomized, double-blind, placebo-controlled trial. Eur J Heart Fail 17(10):1050–1056. https://doi.org/10.1002/ejhf.300

    Article  CAS  PubMed  Google Scholar 

  19. Pitt B, Bakris GL, Bushinsky DA et al (2015) Effect of patiromer on reducing serum potassium and preventing recurrent hyperkalaemia in patients with heart failure and chronic kidney disease on RAAS inhibitors. Eur J Heart Fail 17(10):1057–1065. https://doi.org/10.1002/ejhf.402

    Article  CAS  PubMed  Google Scholar 

  20. Pitt B, Anker SD, Bushinsky DA, Kitzman DW, Zannad F, Huang IZ (2011) Evaluation of the efficacy and safety of RLY5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patients with chronic heart failure (the PEARL-HF) trial. Eur Heart J 32(7):820–828. https://doi.org/10.1093/eurheartj/ehq502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Potassium Reduction Initiative to Optimize RAAS Inhibition Therapy With Sodium Zirconium Cyclosilicate in Heart Failure—Study Results—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/results/NCT03532009?term=prioritize+hf&draw=2&rank=1&view=results. Accessed 10 Aug 2022

  22. Tardif JC, Rouleau J, Chertow GM et al (2022) Potassium reduction with sodium zirconium cyclosilicate in patients with heart failure. ESC Heart Fail. https://doi.org/10.1002/EHF2.14268

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li L, Harrison SD, Cope MJ et al (2016) Mechanism of action and pharmacology of patiromer, a nonabsorbed cross-linked polymer that lowers serum potassium concentration in patients with hyperkalemia. J Cardiovasc Pharmacol Ther 21(5):456–465. https://doi.org/10.1177/1074248416629549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murphy D, Banerjee D (2022) Hyperkalaemia in heart failure: consequences for outcome and sequencing of therapy. Curr Heart Fail Rep 19(4):191. https://doi.org/10.1007/S11897-022-00552-3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Campese VM, Adenuga G (2016) Electrophysiological and clinical consequences of hyperkalemia. Kidney Int Suppl (2011). 6(1):16–19. https://doi.org/10.1016/J.KISU.2016.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ferreira JP, Butler J, Rossignol P et al (2020) Abnormalities of potassium in heart failure: JACC state-of-the-art review. J Am Coll Cardiol 75(22):2836–2850. https://doi.org/10.1016/J.JACC.2020.04.021

    Article  CAS  PubMed  Google Scholar 

  27. Desai AS, Liu J, Pfeffer MA et al (2018) Incident hyperkalemia, hypokalemia, and clinical outcomes during spironolactone treatment of heart failure with preserved ejection fraction: analysis of the TOPCAT trial. J Card Fail 24(5):313–320. https://doi.org/10.1016/J.CARDFAIL.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  28. Lund LH, Pitt B (2018) Is hyperkalaemia in heart failure a risk factor or a risk marker? Implications for renin-angiotensin-aldosterone system inhibitor use. Eur J Heart Fail 20(5):931–932. https://doi.org/10.1002/EJHF.1175

    Article  PubMed  Google Scholar 

  29. Beusekamp JC, Tromp J, van der Wal HH et al (2018) Potassium and the use of renin-angiotensin-aldosterone system inhibitors in heart failure with reduced ejection fraction: data from BIOSTAT-CHF. Eur J Heart Fail 20(5):923–930. https://doi.org/10.1002/EJHF.1079

    Article  CAS  PubMed  Google Scholar 

  30. Chang AR, Sang Y, Leddy J et al (2016) Antihypertensive medications and the prevalence of hyperkalemia in a large health system. Hypertension 67(6):1181–1188. https://doi.org/10.1161/HYPERTENSIONAHA.116.07363

    Article  CAS  PubMed  Google Scholar 

  31. Ben Salem C, Badreddine A, Fathallah N, Slim R, Hmouda H (2014) Drug-induced hyperkalemia. Drug Saf 37(9):677–692. https://doi.org/10.1007/S40264-014-0196-1

    Article  CAS  PubMed  Google Scholar 

  32. Aldahl M, Caroline Jensen AS, Davidsen L et al (2017) Associations of serum potassium levels with mortality in chronic heart failure patients. Eur Heart J 38(38):2890–2896. https://doi.org/10.1093/EURHEARTJ/EHX460

    Article  CAS  PubMed  Google Scholar 

  33. Linde C, Qin L, Bakhai A et al (2019) Serum potassium and clinical outcomes in heart failure patients: results of risk calculations in 21 334 patients in the UK. ESC Heart Fail 6(2):280–290. https://doi.org/10.1002/EHF2.12402

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cooper LB, Benson L, Mentz RJ et al (2020) Association between potassium level and outcomes in heart failure with reduced ejection fraction: a cohort study from the Swedish Heart Failure Registry. Eur J Heart Fail 22(8):1390–1398. https://doi.org/10.1002/EJHF.1757

    Article  CAS  PubMed  Google Scholar 

  35. Tannen RL (1985) Diuretic-induced hypokalemia. Kidney Int 28(6):988–1000. https://doi.org/10.1038/KI.1985.229

    Article  CAS  PubMed  Google Scholar 

  36. Rossignol P, Girerd N, Bakris G et al (2017) Impact of eplerenone on cardiovascular outcomes in heart failure patients with hypokalaemia. Eur J Heart Fail 19(6):792–799. https://doi.org/10.1002/EJHF.688

    Article  CAS  PubMed  Google Scholar 

  37. Cooper LB, Hammill BG, Peterson ED et al (2015) Consistency of laboratory monitoring during initiation of mineralocorticoid receptor antagonist therapy in patients with heart failure. JAMA 314(18):1973. https://doi.org/10.1001/JAMA.2015.11904

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study received no funding.

Author information

Authors and Affiliations

Authors

Contributions

PC and TV conceived and designed the study. PC, TV, and DM independently assessed the studies for possible inclusion and collected the data. PC, HO, and MT analyzed the data. PC and DM produced the first draft of the manuscript. MCPN and ACSS made general supervision and were responsible for data interpretation and writing the final version. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Ana C. Simões e Silva.

Ethics declarations

Conflict of interest

All authors report no relationships that could be construed as a conflict of interest. All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5635 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, P.E.P., Veiga, T.M.A., Lacerda, H. et al. Safety and efficacy of new potassium binders on hyperkalemia management in patients with heart failure: a systematic review and meta-analysis of randomized controlled trials. Clin Res Cardiol 112, 991–1002 (2023). https://doi.org/10.1007/s00392-023-02215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-023-02215-2

Keywords

Navigation