Skip to main content
Log in

Contact force facilitates the achievement of an unexcitable ablation line during pulmonary vein isolation

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Aims

Contact force (CF) catheters provide catheter-tissue contact information to improve outcome of pulmonary vein isolation (PVI) in paroxysmal atrial fibrillation (PAF). We evaluated different target-CF values for achievement of the additional endpoint of an unexcitable ablation line.

Methods

A total of 106 patients undergoing PVI were randomized into three groups (G) (G1: target-CF 15 g, G2: target-CF 10 g, G3: CF concealed from operator). The PVI encircling line was divided into predefined sections. Excitable tissue along the PVI-line identified by high output pacing (10 V, 2 ms) was targeted for further ablation.

Results

Mean average CF was 17.4 ± 4.7 g (G1) vs. 12.3 ± 6.0 g (G2) vs. 11.1 ± 6.5 g (G 3) (p < 0.001). Primary unexcitable ablation lines were found in 38.6, 19.4 and 5.7% (G1, G2, G3 respectively; G1 vs. G2 p < 0.05, G1 vs. G3 p < 0.001, G2 vs. G3 ns). Additional radiofrequency (RF)-energy to achieve unexcitability was lowest in G1 (3.6 ± 3.1 kJ vs. 8.6 ± 7.2 kJ (G2) and 10.4 ± 6.7 (G3), p ≤ 0.001, G2 vs. G3 ns) with accordingly lowest additional RF applications in G1 (3.0 ± 2.6 vs. 7.0 ± 5.4 in G2 and 8.4 ± 4.0 in G3; G1 vs. G2 and G3, p < 0.001, G 2 vs. G 3 ns). Sections along ablation lines with low initial CF were most likely to reveal excitability. Single procedure success was 81.9 vs. 73.5 vs. 71.4% (G 1, 2 and 3, p = 0.6) during 437 ± 254 day follow-up.

Conclusion

Higher tip-to-tissue CF during PVI facilitates the achievement of an unexcitable ablation line, requiring less additional RF-energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Willems S, Steven D, Servatius H, Hoffmann BA, Drewitz I, Müllerleile K et al (2010) Persistence of pulmonary vein isolation after robotic remote-navigated ablation for atrial fibrillation and its relation to clinical outcome. J Cardiovasc Electrophysiol 21(10):1079–1084

    Article  PubMed  Google Scholar 

  2. Rillig A, Lin T, Schmidt B, Feige B, Heeger C, Wegner J et al (2016) Experience matters: long-term results of pulmonary vein isolation using a robotic navigation system for the treatment of paroxysmal atrial fibrillation. Clin Res Cardiol 105(2):106–116

    Article  PubMed  Google Scholar 

  3. Kettering K, Yim DH, Benz A, Gramley F (2017) Catheter ablation of paroxysmal atrial fibrillation: Circumferential pulmonary vein ablation: Success rates with and without exclusion of areas adjacent to the esophagus. Clin Res Cardiol 106(9):743–51

    Article  PubMed  Google Scholar 

  4. Wasmer K, Dechering DG, Köbe J, Mönnig G, Pott C, Frommeyer G et al (2016) Pulmonary vein reconnection and arrhythmia progression after antral linear catheter ablation of paroxysmal and persistent atrial fibrillation. Clin Res Cardiol 105(9):738–743

    Article  PubMed  Google Scholar 

  5. Sohns C, Saguner AM, Lemes C, Santoro F, Mathew S, Heeger C et al (2016) First clinical experience using a novel high-resolution electroanatomical mapping system for left atrial ablation procedures. Clin Res Cardiol 105(12):992–1002

    Article  PubMed  Google Scholar 

  6. Nakamura K, Naito S, Sasaki T, Minami K, Take Y, Shimizu S et al (2016) Predictors of chronic pulmonary vein reconnections after contact force-guided ablation: Importance of completing electrical isolation with circumferential lines and creating sufficient ablation lesion densities. J Interv Card Electrophysiol 47(3):321–331

    Article  PubMed  Google Scholar 

  7. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 37(38):2893–2962

  8. Yokoyama K, Nakagawa H, Shah DC, Lambert H, Leo G, Aeby N et al (2008) Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus. Circ Arrhythm Electrophysiol 1(5):354–362

    Article  PubMed  Google Scholar 

  9. Reddy VY, Shah D, Kautzner J, Schmidt B, Saoudi N, Herrera C et al (2012) The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm 9(11):1789–1795

    Article  PubMed  Google Scholar 

  10. Kautzner J, Neuzil P, Lambert H, Peichl P, Petru J, Cihak R et al. EFFICAS II: Optimization of catheter contact force improves outcome of pulmonary vein isolation for paroxysmal atrial fibrillation. Europace, 17(8):1229–1235

  11. Afzal MR, Chatta J, Samanta A, Waheed S, Mahmoudi M, Vukas R et al (2015) Use of contact force sensing technology during radiofrequency ablation reduces recurrence of atrial fibrillation: a systematic review and meta-analysis. Heart Rhythm 12(9):1990–1996

    Article  PubMed  Google Scholar 

  12. Natale A, Reddy VY, Monir G, Wilber DJ, Lindsay BD, McElderry HT et al (2014) Paroxysmal AF catheter ablation with a contact force sensing catheter: Results of the prospective, multicenter SMART-AF trial. J Am Coll Cardiol 64(7):647–656

    Article  PubMed  Google Scholar 

  13. Steven D, Reddy VY, Inada K, Roberts-Thomson KC, Seiler J, Stevenson WG, Michaud GF (2010) Loss of pace capture on the ablation line: A new marker for complete radiofrequency lesions to achieve pulmonary vein isolation. Heart Rhythm 7(3):323–330

    Article  PubMed  Google Scholar 

  14. Steven D, Sultan A, Reddy V, Luker J, Altenburg M, Hoffmann B et al (2013) Benefit of pulmonary vein isolation guided by loss of pace capture on the ablation line: results from a prospective 2-center randomized trial. J Am Coll Cardiol Jul 2;62(1):44–50

    Article  Google Scholar 

  15. Eitel C, Hindricks G, Sommer P, Gaspar T, Kircher S, Wetzel U et al (2010) Circumferential pulmonary vein isolation and linear left atrial ablation as a single-catheter technique to achieve bidirectional conduction block: the pace-and-ablate approach. Heart Rhythm 7(2):157–64

    Article  PubMed  Google Scholar 

  16. Schaeffer B, Willems S, Sultan A, Hoffmann BA, Lüker J, Schreiber D et al (2015) Loss of pace capture on the ablation line during pulmonary vein isolation versus “dormant conduction”: is adenosine expendable? J Cardiovasc Electrophysiol 26(10):1075–1080

    Article  PubMed  Google Scholar 

  17. Gunawardene MA, Hoffmann BA, Schaeffer B, Chung D-U, Moser J, Akbulak RO et al. Influence of energy source on early atrial fibrillation recurrences: a comparison of cryoballoon vs. Radiofrequency current energy ablation with the endpoint of unexcitability in pulmonary vein isolation. Europace 2016, 14

  18. Moser J, Sultan A, Lüker J, Servatius H, Salzbrunn T, Altenburg M et al (2017) 5-Year outcome of pulmonary vein isolation by loss of pace capture on the ablation line versus electrical circumferential pulmonary vein isolation. JACC Clin Electrophysiol 3(11). https://doi.org/10.1016/j.jacep.2017.04.019

  19. Kosmidou I, Houde-Walter H, Foley L, Michaud G (2013) Loss of pace capture after radiofrequency application predicts the formation of uniform transmural lesions. Europace 15(4):601–606

    Article  PubMed  Google Scholar 

  20. Makimoto H, Lin T, Rillig A, Metzner A, Wohlmuth P, Arya A et al (2014) In vivo contact force analysis and correlation with tissue impedance during left atrial mapping and catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol 7(1):46–54

    Article  PubMed  Google Scholar 

  21. Ullah W, McLean A, Tayebjee MH, Gupta D, Ginks MR, Haywood GA et al (2016) Randomized trial comparing pulmonary vein isolation using the smarttouch catheter with or without real-time contact force data. Heart Rhythm 13(9):1761–1767

    Article  PubMed  Google Scholar 

  22. Park CI, Lehrmann H, Keyl C, Weber R, Schiebeling J, Allgeier J et al (2014) Mechanisms of pulmonary vein reconnection after radiofrequency ablation of atrial fibrillation: The deterministic role of contact force and interlesion distance. J Cardiovasc Electrophysiol 25(7):701–708

    Article  PubMed  Google Scholar 

  23. Okumura Y, Watanabe I, Iso K, Nagashima K, Sonoda K, Sasaki N et al (2016) Clinical utility of automated ablation lesion tagging based on catheter stability information (visitag module of the CARTO 3 system) with contact force-time integral during pulmonary vein isolation for atrial fibrillation. J Interv Card Electrophysiol 47(2):245–252

    Article  PubMed  Google Scholar 

  24. Rozen G, Ptaszek L, Zilberman I, Cordaro K, Heist EK, Beeckler C et al (2017) Prediction of radiofrequency ablation lesion formation using a novel temperature sensing technology incorporated in a force sensing catheter. Heart Rhythm 14(2):248–254

    Article  PubMed  Google Scholar 

  25. Das M, Loveday JJ, Wynn GJ, Gomes S, Saeed Y, Bonnett LJ et al (2017) Ablation index, a novel marker of ablation lesion quality: prediction of pulmonary vein reconnection at repeat electrophysiology study and regional differences in target values. Europace 19(5):775–783

    PubMed  Google Scholar 

  26. Gitenay E, O’ Hara GE, Sarrazin J-F, Nault I, Philippon F, Sadron Blaye-Felice M et al (2016) Contact-force catheters: efficacy versus safety? Case report of 2 atrioesophageal fistulae. J Cardiovasc Electrophysiol 27(12):1483–1487

    Article  PubMed  Google Scholar 

  27. Shurrab M, Di Biase L, Briceno DF, Kaoutskaia A, Haj-Yahia S, Newman D et al (2015) Impact of contact force technology on atrial fibrillation ablation: a meta-analysis. J Am Heart Assoc 4(9):e002476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Schaeffer.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaeffer, B., Willems, S., Meyer, C. et al. Contact force facilitates the achievement of an unexcitable ablation line during pulmonary vein isolation. Clin Res Cardiol 107, 632–641 (2018). https://doi.org/10.1007/s00392-018-1228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-018-1228-0

Keywords

Navigation