Skip to main content

Advertisement

Log in

β-Blockers and ivabradine differentially affect cardiopulmonary function and left ventricular filling index

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Objective

Patients with left ventricular (LV) diastolic dysfunction are characterized by exertional dyspnoea. Heart rate (HR) reduction by β-blockers can improve exercise tolerance by prolonging LV filling, but their negative inotropic and lusitropic properties can be detrimental in this disease. We tested the effects of administering ivabradine, a HR-lowering drug without impact on cardiac kinetics that may favorably affect diastolic function.

Methods

Twenty-four patients with coronary artery disease (CAD) and normal LV ejection fraction on chronic β-blocker therapy were included. NT-proBNP serum levels were determined prior to and after cardiopulmonary exercise. β-Blockers were then replaced by ivabradine and patients were re-tested after 6 weeks. Patients were initially classified as having a low (E/e′ ≤ 8; n = 11) or high (E/e′ > 8; n = 13) LV filling index.

Results

E/e′ significantly decreased during ivabradine therapy in patients with high E/e′ (10.7 ± 2.9 vs. 8.9 ± 1.7; p < 0.01), whereas no difference occurred in patients with low E/e′ (6.4 ± 0.7 vs. 6.5 ± 1.1; p = ns). With ivabradine, patients with high E/e′ had an increased oxygen uptake at the anaerobic threshold (from 10.8 ± 1.4 to 11.8 ± 1.9 ml/min/kg; p < 0.05) and a steeper slope of the initial oxygen pulse curve (from 293 ± 109 to 359 ± 117 µl/beat/kg/W; p < 0.05). Moreover, patients with high E/e′ had lower NT-proBNP serum levels at rest (169 ± 207 vs. 126 ± 146 pg/ml; p < 0.05) and after exercise (190 ± 256 vs. 136 ± 162 pg/ml; p < 0.05) during ivabradine therapy.

Conclusions

In patients with CAD and elevated E/e′, switching therapy from β-blockers to ivabradine may cause a reduction in LV filling pressures and an improved stroke volume response to exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bangalore S, Steg G, Deedwania P et al (2012) β-Blocker use and clinical outcomes in stable outpatients with and without coronary artery disease. JAMA 308(13):1340–1349

    Article  CAS  PubMed  Google Scholar 

  2. Ozasa N, Morimoto T, Bao B et al (2013) β-blocker use in patients after percutaneous coronary interventions: one size fits all? Worse outcomes in patients without myocardial infarction or heart failure. Int J Cardiol 168(2):774–779

    Article  PubMed  Google Scholar 

  3. Bangalore S, Bhatt DL, Steg PG et al (2014) β-blockers and cardiovascular events in patients with and without myocardial infarction: post hoc analysis from the CHARISMA Trial. Circ Cardiovasc Qual Outcomes 7(6):872–881

    Article  PubMed  Google Scholar 

  4. Williams B, Lacy PS (2009) Impact of heart rate on central aortic pressures and hemodynamics: analysis from the CAFE (conduit artery function evaluation) study: CAFE-heart rate. J Am Coll Cardiol 54(8):705–713

    Article  PubMed  Google Scholar 

  5. Borer JS, Le Heuzey JY (2008) Characterization of the heart rate-lowering action of ivabradine, a selective I(f) current inhibitor. Am J Ther 15(5):461–473

    Article  PubMed  Google Scholar 

  6. Vilaine JP (2006) The discovery of the selective I(f) current inhibitor ivabradine. A new therapeutic approach to ischemic heart disease. Pharmacol Res Offi J Ital Pharmacol Soc 53(5):424–434

  7. Colin P, Ghaleh B, Monnet X et al (2003) Contributions of heart rate and contractility to myocardial oxygen balance during exercise. Am J Physiol Heart Circ Physiol 284(2):H676–H682

    Article  CAS  PubMed  Google Scholar 

  8. Becher PM, Lindner D, Miteva K et al (2012) Role of heart rate reduction in the prevention of experimental heart failure: comparison between If-channel blockade and beta-receptor blockade. Hypertension 59(5):949–957

    Article  CAS  PubMed  Google Scholar 

  9. Kosmala W, Holland DJ, Rojek A et al (2013) Effect of If-channel inhibition on hemodynamic status and exercise tolerance in heart failure with preserved ejection fraction: a randomized trial. J Am Coll Cardiol 62(15):1330–1338

    Article  CAS  PubMed  Google Scholar 

  10. Wasserman K, Hansen JE, Sue DY et al (2005) Principles of exercise testing and interpretation, 4th edn. Lippincott Williams & Williams, Philadelphia

    Google Scholar 

  11. Nagueh SF, Appleton CP, Gillebert TC et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10(2):165–193

    Article  PubMed  Google Scholar 

  12. Simantirakis EN, Nakou ES, Kallergis EM et al (2015) Long-term effect of If-channel inhibition on diastolic function and exercise capacity in heart failure patients with preserved ejection fraction. Int J Cardiol 187:9–11

    Article  CAS  PubMed  Google Scholar 

  13. Williams B, Lacy PS, Thom SM et al (2006) Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 113(9):1213–1225

    Article  CAS  PubMed  Google Scholar 

  14. Missault LH, Duprez DA, Brandt AA et al (1993) Exercise performance and diastolic filling in essential hypertension. Blood Press 2(4):284–288

    Article  CAS  PubMed  Google Scholar 

  15. Kim HK, Kim YJ, Cho YS et al (2003) Determinants of exercise capacity in hypertensive patients: new insights from tissue Doppler echocardiography. Am J Hypertens 16(7):564–569

    Article  PubMed  Google Scholar 

  16. Gerdts E, Bjornstad H, Toft S et al (2002) Impact of diastolic Doppler indices on exercise capacity in hypertensive patients with electrocardiographic left ventricular hypertrophy (a LIFE substudy). J Hypertens 20(6):1223–1229

    Article  CAS  PubMed  Google Scholar 

  17. Lin FY, Zemedkun M, Dunning A et al (2013) Extent and severity of coronary artery disease by coronary CT angiography is associated with elevated left ventricular diastolic pressures and worsening diastolic function. Journal of cardiovascular computed tomography 7(5):289–96 e1

  18. Neuman Y, Kotliroff A, Bental T et al (2008) Pulmonary artery pressure and diastolic dysfunction in normal left ventricular systolic function. Int J Cardiol 127(2):174–178

    Article  PubMed  Google Scholar 

  19. Ciurzynski M, Bienias P, Irzyk K et al (2013) Exaggerated increase of exercise-induced pulmonary artery pressure in systemic sclerosis patients predominantly results from left ventricular diastolic dysfunction. Clin Res Cardiol 102(11):813–820

    Article  PubMed  PubMed Central  Google Scholar 

  20. Borlaug BA, Nishimura RA, Sorajja P et al (2010) Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Failure 3(5):588–595

    Article  PubMed  Google Scholar 

  21. Reil JC, Hohl M, Reil GH et al (2013) Heart rate reduction by If-inhibition improves vascular stiffness and left ventricular systolic and diastolic function in a mouse model of heart failure with preserved ejection fraction. Eur Heart J 34(36):2839–2849

    Article  PubMed  PubMed Central  Google Scholar 

  22. Drouin A, Gendron ME, Thorin E et al (2008) Chronic heart rate reduction by ivabradine prevents endothelial dysfunction in dyslipidaemic mice. Br J Pharmacol 154(4):749–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Custodis F, Baumhakel M, Schlimmer N et al (2008) Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation 117(18):2377–2387

    Article  CAS  PubMed  Google Scholar 

  24. Yue-Chun L, Teng Z, Na-Dan Z et al (2012) Comparison of effects of ivabradine versus carvedilol in murine model with the Coxsackievirus B3-induced viral myocarditis. PLoS One 7(6):e39394

    Article  PubMed  PubMed Central  Google Scholar 

  25. Busseuil D, Shi Y, Mecteau M et al (2010) Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology 117(3):234–242

    Article  CAS  PubMed  Google Scholar 

  26. Kohler AC, Sag CM, Maier LS (2014) Reactive oxygen species and excitation-contraction coupling in the context of cardiac pathology. J Mol Cell Cardiol 73:92–102

    Article  CAS  PubMed  Google Scholar 

  27. Munzel T, Gori T, Keaney JF Jr et al (2015) Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J 36(38):2555–2564

    Article  PubMed  Google Scholar 

  28. Heusch G, Skyschally A, Gres P et al (2008) Improvement of regional myocardial blood flow and function and reduction of infarct size with ivabradine: protection beyond heart rate reduction. Eur Heart J 29(18):2265–2275

    Article  PubMed  Google Scholar 

  29. Kleinbongard P, Gedik N, Witting P et al (2015) Pleiotropic, heart rate-independent cardioprotection by ivabradine. Br J Pharmacol 172(17):4380–4390

    Article  CAS  PubMed  Google Scholar 

  30. Fischer-Rasokat U, Honold J, Lochmann D et al (2014) Ivabradine therapy to unmask heart rate-independent effects of β-blockers on pulse wave reflections. Clin Res Cardiol 103(6):487–494

    Article  CAS  PubMed  Google Scholar 

  31. Simon L, Ghaleh B, Puybasset L et al (1995) Coronary and hemodynamic effects of S 16257, a new bradycardic agent, in resting and exercising conscious dogs. J Pharmacol Exp Ther 275(2):659–666

    CAS  PubMed  Google Scholar 

  32. Heusch G, Baumgart D, Camici P et al (2000) α-adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101(6):689–694

    Article  CAS  PubMed  Google Scholar 

  33. Stringer WW, Hansen JE, Wasserman K (1997) Cardiac output estimated noninvasively from oxygen uptake during exercise. J Appl Physiol 82(3):908–912

    CAS  PubMed  Google Scholar 

  34. Whipp BJ, Higgenbotham MB, Cobb FC (1996) Estimating exercise stroke volume from asymptotic oxygen pulse in humans. J Appl Physiol 81(6):2674–2679

    CAS  PubMed  Google Scholar 

  35. Klainman E, Fink G, Lebzelter J et al (2002) The relationship between left ventricular function assessed by multigated radionuclide test and cardiopulmonary exercise test in patients with ischemic heart disease. Chest 121(3):841–845

    Article  PubMed  Google Scholar 

  36. Sperling MP, Caruso FC, Mendes RG, Dutra DB, Arakelian VM, Bonjorno JC, Catai AM, Arena R, Borghi-Silva A (2014) Relationship between non-invasive haemodynamic responses and cardiopulmonary exercise testing in patients with coronary artery disease. Clin Physiol Funct Imaging. doi:10.1111/cpf.12197

    PubMed  Google Scholar 

  37. Mottram PM, Haluska BA, Marwick TH (2004) Response of B-type natriuretic peptide to exercise in hypertensive patients with suspected diastolic heart failure: correlation with cardiac function, hemodynamics, and workload. Am Heart J 148(2):365–370

    Article  CAS  PubMed  Google Scholar 

  38. Marie PY, Mertes PM, Hassan-Sebbag N et al (2004) Exercise release of cardiac natriuretic peptides is markedly enhanced when patients with coronary artery disease are treated medically by beta-blockers. J Am Coll Cardiol 43(3):353–359

    Article  CAS  PubMed  Google Scholar 

  39. Luchner A, Burnett JC Jr, Jougasaki M et al (1998) Augmentation of the cardiac natriuretic peptides by beta-receptor antagonism: evidence from a population-based study. J Am Coll Cardiol 32(7):1839–1844

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Elizabeth Martinson, PhD, from the KHFI Editorial Office for excellent editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Fischer-Rasokat.

Ethics declarations

Conflict of interest

U. Fischer-Rasokat, H. Möllmann and C. Hamm report receiving lecture fees from Servier. No other potential conflict of interest relevant to this article was reported.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer-Rasokat, U., Honold, J., Lochmann, D. et al. β-Blockers and ivabradine differentially affect cardiopulmonary function and left ventricular filling index. Clin Res Cardiol 105, 527–534 (2016). https://doi.org/10.1007/s00392-015-0950-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-015-0950-0

Keywords

Navigation