Skip to main content

Advertisement

Log in

Polymorphisms of miRNAs genes are associated with the risk and prognosis of coronary artery disease

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

MicroRNAs (miRNAs) are small, single-stranded, non-protein-coding RNAs of about 22 nucleotides. miRNA molecules have been identified that plays key roles in a broad range of physiologic and pathologic processes. Polymorphisms in the corresponding sequence space are likely to make a significant contribution to phenotypic variation.

Methods and results

To assess the variations of rs11614913 T → C in hsa-mir-196a2 and rs3746444 A → G in hsa-mir-499 in the complex etiology of coronary artery disease (CAD), 956 CAD patients diagnosed by coronary arterial angiography and 620 controls were enrolled. Among the patients, 785 (785/956) had complete follow-ups for 42 months. The variant genotypes CC/CT of hsa-mir-196a2 rs11614913 T → C were not associated with a significantly increased risk of CAD (adjusted OR = 1.02, 95% CI = 0.76–1.38), compared with wide genotype TT, but CC and CC/CT genotypes were associated with 34 and 35% increased risks of serious prognosis of CAD (adjusted HR = 1.34, 95% CI = 1.02–1.75 for CC; adjusted HR = 1.35, 95% CI = 1.03–1.75 for CC/CT). In the variant of hsa-mir-499 rs3746444A → G, GG was associated with the 223% increased risk of CAD (adjusted OR = 3.23, 95% CI = 1.56–6.67). Cox regression analysis showed that age, smoking status, numbers of pathological changes in coronary arteries, rs11614913 T → C, and diabetes mellitus were associated with serious prognosis of CAD.

Conclusion

Our findings strongly implicate the functional miRNAs polymorphisms of hsa-mir-196a2 and hsa-mir-499 genes may modulate the occurrence or prognosis in Chinese CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

DM:

Diabetes mellitus

TC:

Total cholesterol

TG:

Triglyceride

HDL-C:

High density lipoprotein cholesterol

LDL-C:

Low density lipoprotein cholesterol

LD:

Linkage-disequilibrium

SNP:

Single nucleotide polymorphism

OR:

Odds ratio

HR:

Hazard risk

CI:

Confidence interval

References

  1. WHO (2008) World Health Statistics Report 2008. World Health Organization, Geneva. http://www.who.int/whosis/whostat/2008/en/index.html

  2. Mirzaei M, Truswell AS, Taylor R, Leeder SR (2009) Coronary heart disease epidemics: not all the same. Heart 95:740–746

    Article  PubMed  CAS  Google Scholar 

  3. Oppenheimer GM (2010) Framingham heart study: the first 20 years. Prog Cardiovasc Dis 53:55–61

    Article  PubMed  Google Scholar 

  4. Sullivan PW, Ghushchyan V, Wyatt HR, Wu EQ, Hill JO (2007) Impact of cardiometabolic risk factor clusters on health-related quality of life in the U.S. Obesity 15:511–521

    Article  PubMed  Google Scholar 

  5. May A, Wang TJ (2008) Biomarkers for cardiovascular disease: challenges and future directions. Trends Mol Med 14:261–267

    Article  PubMed  CAS  Google Scholar 

  6. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    Article  PubMed  CAS  Google Scholar 

  7. Negrini M, Nicoloso MS, Calin GA (2009) MicroRNAs and cancer—new paradigms in molecular oncology. Curr Opin Cell Biol 21:470–479

    Article  PubMed  CAS  Google Scholar 

  8. Divakaran V, Mann DL (2008) The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res 103:1072–1083

    Article  PubMed  CAS  Google Scholar 

  9. Cai B, Pan Z, Lu Y (2010) The roles of microRNAs in heart diseases: a novel important regulator. Curr Med Chem 17:407–411

    Article  PubMed  CAS  Google Scholar 

  10. Small EM, Frost RJ, Olson EN (2010) MicroRNAs add a new dimension to cardiovascular disease. Circulation 121:1022–1032

    Article  PubMed  Google Scholar 

  11. Huang ZP, Neppl RL, Wang DZ (2010) MicroRNAs in cardiac remodeling and disease. J Cardiovasc Transl Res 3:212–218

    Article  PubMed  Google Scholar 

  12. D′Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG et al (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31:2765–2773

    Article  PubMed  Google Scholar 

  13. Georges M, Coppieters W, Charlier C (2007) Polymorphic miRNA-mediated gene regulation: contribution to phenotypic variation and disease. Curr Opin Genet Dev 17:166–176

    Article  PubMed  CAS  Google Scholar 

  14. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  15. Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L et al (2008) Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 118:2600–2608

    Article  PubMed  CAS  Google Scholar 

  16. Beetz C, Schüle R, Deconinck T, Tran-Viet KN, Zhu H, Kremer BP et al (2008) REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain 131:1078–1086

    Article  PubMed  Google Scholar 

  17. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B et al (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818

    Article  PubMed  CAS  Google Scholar 

  18. Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS et al (2007) Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 81:405–413

    Article  PubMed  CAS  Google Scholar 

  19. Lv K, Guo Y, Zhang Y, Wang K, Jia Y, Sun S (2008) Allele-specific targeting of hsa-miR-657 to human IGF2R creates a potential mechanism underlying the association of ACAA-insertion/deletion polymorphism with Type 2 diabetes. Biochem Biophys Res Commun 374:101–105

    Article  PubMed  CAS  Google Scholar 

  20. Hu Z, Liang J, Wang Z, Tian T, Zhou X, Chen J et al (2008) Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat 30:79–84

    Article  Google Scholar 

  21. Tian T, Shu Y, Chen J, Hu Z, Xu L, Jin G et al (2009) A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomark Prev 18:1183–1187

    Article  CAS  Google Scholar 

  22. Gao LB, Bai P, Pan XM, Jia J, Li LJ, Liang WB et al (2011) The association between two polymorphisms in pre-miRNAs and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 125:571–574

    Article  PubMed  Google Scholar 

  23. Xu J, Hu Z, Xu Z, Gu H, Yi L, Cao H et al (2009) Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum Mutat 30:1231–1236

    Article  PubMed  CAS  Google Scholar 

  24. Zhou B, Rao L, Peng Y, Wang Y, Chen Y, Song Y et al (2010) Common genetic polymorphisms in pre-microRNAs were associated with increased risk of dilated cardiomyopathy. Clin Chim Acta 411:1287–1290

    Article  PubMed  CAS  Google Scholar 

  25. Catalucci D, Gallo P, Condorelli G (2009) MicroRNAs in cardiovascular biology and heart disease. Circ Cardiovasc Genet 2:402–408

    Article  PubMed  CAS  Google Scholar 

  26. Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 18:297–300

    Article  PubMed  CAS  Google Scholar 

  27. Krutovskikh VA, Herceg Z (2010) Oncogenic microRNAs (OncomiRs) as a new class of cancer biomarkers. Bioessays 32:894–904

    Article  PubMed  CAS  Google Scholar 

  28. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  29. Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y et al (2010) Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28:1721–1726

    Article  PubMed  Google Scholar 

  30. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  PubMed  CAS  Google Scholar 

  31. Liu Z, Li G, Wei S, Niu J, El-Naggar AK, Sturgis EM et al (2010) Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck. Cancer 116:4753–4760

    Article  PubMed  CAS  Google Scholar 

  32. Yang H, Dinney CP, Ye Y, Zhu Y, Grossman HB, Wu X (2008) Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res 68:2530–2537

    Article  PubMed  CAS  Google Scholar 

  33. Horikawa Y, Wood CG, Yang H, Zhao H, Ye Y, Gu J et al (2008) Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res 14:7956–7962

    Article  PubMed  CAS  Google Scholar 

  34. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297:1901–1908

    Article  PubMed  CAS  Google Scholar 

  35. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setién F (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67:1424–1429

    Article  PubMed  CAS  Google Scholar 

  36. Duan R, Pak C, Jin P (2007) Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet 16:1124–1131

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (30901230) and the fund of Scientific Research Priming Project of the New Doctors in Southeast University (9225002435).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhi, H., Wang, L., Ma, G. et al. Polymorphisms of miRNAs genes are associated with the risk and prognosis of coronary artery disease. Clin Res Cardiol 101, 289–296 (2012). https://doi.org/10.1007/s00392-011-0391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-011-0391-3

Keywords

Navigation