Skip to main content

Advertisement

Log in

Effects of immunoadsorption on endothelial function, circulating endothelial progenitor cells and circulating microparticles in patients with inflammatory dilated cardiomyopathy

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Immunoadsorption (IA) is used in patients with chronic inflammatory dilative cardiomyopathy (iDCM) to remove cardiotoxic autoantibodies, and to improve myocardial function. We examined the effects of IA on endothelial function, circulating endothelial progenitor cells, and circulating microparticles, including endothelial-derived microparticles, in patients with chronic iDCM.

Methods

Thirteen patients (10 males, 3 females, mean age 52.3 years) with advanced congestive heart failure (NYHA III and IV) secondary due to chronic iDCM (with signs of myocardial inflammation in biopsies, but without persistence of virus genome), and reduced left ventricular ejection fraction (EF < 35%) underwent IA. Blood samples were drawn before an IA course of 5 days, and 6 months after IA. Blood levels of endothelial progenitor cells (EPCs as defined as VEGFR2+CD34+ cells), of microparticles (MPs as defined as Annexin V+ particles with a diameter between 0.1 and 1 μm), and of endothelial-derived MPs (eMPs as defined as CD31+bright CD42b/Annexin V+ particles) were analyzed by flow cytometry. Endothelial function (expressed as reactive hyperemia index (RHI)) and arterial stiffness were assessed by PAT-technology (peripheral arterial tone) using fingertips.

Results

Left ventricular systolic function (EF%) improved on average at 6 months from 26.3 ± 4.8 to 37.9 ± 9.6% (mean ± SEM; p < 0.05). The LV end-diastolic diameter reduced after 6 months from 68.4 ± 8.2 to 61.6 ± 7.9 mm; p < 0.05). Endothelial function improved from 1.53 ± 0.09 to 1.80 ± 0.12 (p < 0.05). The arterial stiffness index remained unchanged. Number of total MPs decreased on average by 36.8% (p < 0.05), the number of eMPs by 39.6% (p < 0.05), respectively. The level of circulating EPC remained unchanged (EPC/PMNC 0.26 ± 0.07 vs. 0.27 ± 0.05 ‰, p = n.s.).

Conclusions

IA treatment improves endothelial function in patients with chronic iDCM. This effect is associated with a significant drop in circulating microparticles. The causal relationship between circulating microparticles and endothelial function is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caforio AL, Mahon NJ, Tona F, McKenna WJ (2002) Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis: pathogenetic and clinical significance. Eur J Heart Fail 4:411–417

    Article  PubMed  Google Scholar 

  2. Maisch B, Richter A, Sandmöller A, Portig I, Pankuweit S (2005) BMBF-Heart Failure Network. Inflammatory dilated cardiomyopathy (DCMI). Herz 30:535–544

    Article  PubMed  Google Scholar 

  3. Kallwellis-Opara A, Dörner A, Poller WC, Noutsias M, Kühl U, Schultheiss HP, Pauschinger M (2007) Autoimmunological features in inflammatory cardiomyopathy. Clin Res Cardiol 96:469–480

    Article  PubMed  CAS  Google Scholar 

  4. Doesch AO, Konstandin M, Celik S, Kristen A, Frankenstein L, Hardt S, Goeser S, Kaya Z, Katus HA, Dengler TJ (2009) Effects of protein A immunoadsorption in patients with advanced chronic dilated cardiomyopathy. J Clin Apher 24(4):141–149

    PubMed  Google Scholar 

  5. Bulut D, Scheeler M, Wichmann T, Börgel J, Miebach T, Mügge A (2010) Effect of protein A immunoadsorption on T cell activation in patients with inflammatory dilated cardiomyopathy. Clin Res Cardiol 99:633–638

    Article  PubMed  CAS  Google Scholar 

  6. Dörffel WV, Wallukat G, Dörffel Y, Felix SB, Baumann G (2004) Immunoadsorption in idiopathic dilated cardiomyopathy, a 3-year follow-up. Int J Cardiol 97:529–534

    Article  PubMed  Google Scholar 

  7. Yusuf S (2002) From the HOPE to the ONTARGET and the TRANSCEND studies: challenges in improving prognosis. Am J Cardiol 89(2A):18A–25A

    Article  PubMed  Google Scholar 

  8. Grimm W, Alter P, Maisch B (2004) Arrhythmia risk stratification with regard to prophylactic implantable defibrillator therapy in patients with dilated cardiomyopathy. Results of MACAS, DEFINITE, and SCD-HeFT. Herz 29:348–352

    Article  PubMed  Google Scholar 

  9. Bauersachs J, Schafer A (2004) Endothelial dysfunction in heart failure: mechanisms and therapeutic approaches. Curr Vasc Pharmacol 2:115–124

    Article  PubMed  CAS  Google Scholar 

  10. Blum A (2009) Heart failure—new insights. Isr Med Assoc J 11(2):105–111

    PubMed  Google Scholar 

  11. Heitzer T, Baldus S, von Kodolitsch Y, Rudolph V, Meinertz T (2005) Systemic endothelial dysfunction as an early predictor of adverse outcome in heart failure. Arterioscler Thromb Vasc Biol 25:1174–1179

    Article  PubMed  CAS  Google Scholar 

  12. de Berrazueta JR, Guerra-Ruiz A, García-Unzueta MT, Toca GM, Laso RS, de Adana MS, Martín MA, Cobo M, Llorca J (2010) Endothelial dysfunction, measured by reactive hyperaemia using strain-gauge plethysmography, is an independent predictor of adverse outcome in heart failure. Eur J Heart Fail 12:477–483

    Article  PubMed  Google Scholar 

  13. Bauersachs J, Bouloumié A, Fraccarollo D, Hu K, Busse R, Ertl G (1999) Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression: role of enhanced vascular superoxide production. Circulation 100:292–298

    PubMed  CAS  Google Scholar 

  14. Nonaka-Sarukawa M, Yamamoto K, Aoki H, Nishimura Y, Tomizawa H, Ichida M, Eizawa T, Muroi K, Ikeda U, Shimada K (2007) Circulating endothelial progenitor cells in congestive heart failure. Int J Cardiol 119:344–348

    Article  PubMed  Google Scholar 

  15. Bulut D, Maier K, Bulut-Streich N, Börgel J, Hanefeld C, Mügge A (2008) Circulating endothelial microparticles correlate inversely with endothelial function in patients with ischemic left ventricular dysfunction. J Card Fail 14:336–340

    Article  PubMed  CAS  Google Scholar 

  16. Orozco AF, Lewis DE (2010) Flow cytometric analysis of circulating microparticles in plasma. Cytom A 77:502–514

    Article  Google Scholar 

  17. Horstman LL, Jy W, Jimenez JJ, Ahn YS (2004) Endothelial microparticles as markers of endothelial dysfunction. Front Biosci 9:1118–1135

    Article  PubMed  CAS  Google Scholar 

  18. Boulanger CM, Scoazec A, Ebrahimian T, Henry P, Mathieu E, Tedgui A, Mallat Z (2001) Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 104:2649–2652

    Article  PubMed  CAS  Google Scholar 

  19. Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH, Mostefai HA, Draunet-Busson C, Leftheriotis G, Heymes C, Martinez MC, Andriantsitohaina R (2008) Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am J Pathol 173:1210–1219

    Article  PubMed  CAS  Google Scholar 

  20. Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS (2004) Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol 286:H1910–H1915

    Article  PubMed  CAS  Google Scholar 

  21. Bulut D, Chromik AM, Mügge A. Circulating microparticles induce endothelial apoptosis and dysfunction by possible transfer of caspases (submitted)

  22. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I, Martin I, Nordet P (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93:841–842

    PubMed  CAS  Google Scholar 

  23. Rubinshtein R, Kuvin JT, Soffler M, Lennon RJ, Lavi S, Nelson RE, Pumper GM, Lerman LO, Lerman A (2010) Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur Heart J 31:1142–1148

    Article  PubMed  Google Scholar 

  24. Selamet Tierney ES, Newburger JW, Gauvreau K, Geva J, Coogan E, Colan SD, de Ferranti SD (2009) Endothelial pulse amplitude testing: feasibility and reproducibility in adolescents. J Pediatr 154:901–905

    Article  PubMed  Google Scholar 

  25. Khan SS, Solomon MA, McKoy JP (2005) Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytom Part B (Clin Cytom) 64B:1–8

    Article  Google Scholar 

  26. Bulut D, Albrecht N, Imöhl M, Günesdogan B, Bulut-Streich N, Börgel J et al (2007) Hormonal status modulates circulating endothelial progenitor cells. Clin Res Cardiol 96:258–263

    Article  PubMed  CAS  Google Scholar 

  27. Bulut D, Tüns H, Mügge A (2009) CD31+/Annexin V+ microparticles in healthy offsprings of patients with coronary artery disease. Eur J Clin Invest 39:17–22

    Article  PubMed  CAS  Google Scholar 

  28. Wallukat G, Reinke P, Dörffel WV, Luther HP, Bestvater K, Felix SB, Baumann G (1996) Removal of autoantibodies in dilated cardiomyopathy by immunoadsorption. Int J Cardiol 54:191–195

    Article  PubMed  CAS  Google Scholar 

  29. Felix SB, Staudt A, Dörffel WV, Stangl V, Merkel K, Pohl M, Döcke WD, Morgera S, Neumayer HH, Wernecke KD, Wallukat G, Stangl K, Baumann G (2000) Hemodynamic effects of immunoadsorption and subsequent immunoglobulin substitution in dilated cardiomyopathy: three-month results from a randomized study. J Am Coll Cardiol 35:1590–1598

    Article  PubMed  CAS  Google Scholar 

  30. Felix SB, Staudt A, Landsberger M, Grosse Y, Stangl V, Spielhagen T, Wallukat G, Wernecke KD, Baumann G, Stangl K (2002) Removal of cardiodepressant antibodies in dilated cardiomyopathy by immunoadsorption. J Am Coll Cardiol 39:646–652

    Article  PubMed  CAS  Google Scholar 

  31. Staudt A, Schäper F, Stangl V, Plagemann A, Böhm M, Merkel K, Wallukat G, Wernecke KD, Stangl K, Baumann G, Felix SB (2001) Immunohistological changes in dilated cardiomyopathy induced by immunoadsorption therapy and subsequent immunoglobulin substitution. Circulation 103:2681–2686

    PubMed  CAS  Google Scholar 

  32. Katz SD, Biasucci L, Sabba C, Strom JA, Jondeau G, Galvao M, Solomon S, Nikolic SD, Forman R, LeJemtel TH (1992) Impaired endothelium-mediated vasodilation in the peripheral vasculature of patients with congestive heart failure. J Am Coll Cardiol 19:918–925

    Article  PubMed  CAS  Google Scholar 

  33. Katz SD, Hryniewicz K, Hriljac I, Balidemaj K, Dimayuga C, Hudaihed A, Yasskiy A (2005) Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation 111:310–314

    Article  PubMed  Google Scholar 

  34. Fischer D, Rossa S, Landmesser U, Spiekermann S, Engberding N, Hornig B, Drexler H (2005) Endothelial dysfunction in patients with chronic heart failure is independently associated with increased incidence of hospitalization, cardiac transplantation, or death. Eur Heart J 26:65–69

    Article  PubMed  CAS  Google Scholar 

  35. Vallbracht KB, Schwimmbeck PL, Kühl U, Seeberg B, Schultheiss HP (2004) Endothelium-dependent flow-mediated vasodilation of systemic arteries is impaired in patients with myocardial virus persistence. Circulation. 110:2938–2945

    Article  PubMed  Google Scholar 

  36. Nohria A, Gerhard-Herman M, Creager MA, Hurley S, Mitra D, Ganz P (2006) Role of nitric oxide in the regulation of digital pulse volume amplitude in humans. J Appl Physiol 101:545–548

    Article  PubMed  CAS  Google Scholar 

  37. Kitta Y, Obata JE, Nakamura T, Hirano M, Kodama Y, Fujioka D, Saito Y, Kawabata K, Sano K, Kobayashi T, Yano T, Nakamura K (2009) Kugiyama K.Persistent impairment of endothelial vasomotor function has a negative impact on outcome in patients with coronary artery disease. J Am Coll Cardiol 53:323–330

    Article  PubMed  Google Scholar 

  38. Landmesser U, Spiekermann S, Dikalov S, Tatge H, Wilke R, Kohler C, Harrison DG, Hornig B, Drexler H (2002) Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 106:3073–3078

    Article  PubMed  CAS  Google Scholar 

  39. Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li YY, McTiernan C (2000) The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol 35:537–544

    Article  PubMed  CAS  Google Scholar 

  40. Van Wijk MJ, Van Bavel E, Sturk A, Nieuwland R (2003) Microparticles in cardiovascular diseases. Cardiovasc Res 59:277–287

    Article  Google Scholar 

  41. Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G (2006) Circulating CD31+/Annexin V apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 26:112–116

    Article  PubMed  CAS  Google Scholar 

  42. Nomura S, Suzuki M, Katsura K, Xie GL, Miyazaki Y, Miyake T, Kido H, Kagawa H, Fukuhara S (1995) Platelet-derived microparticles may influence the development of atherosclerosis in diabetes mellitus. Atherosclerosis 116:235–240

    Article  PubMed  CAS  Google Scholar 

  43. Singh N, Gemmell CH, Daly PA, Yeo EL (1995) Elevated platelet-derived microparticle levels during unstable angina. Can J Cardiol 11:1015–1021

    PubMed  CAS  Google Scholar 

  44. Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet JM, Tedgui A (2000) Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 101:841–843

    PubMed  CAS  Google Scholar 

  45. Preston RA, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Valle M, Aime G, Ahn YS (2003) Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 41:211–217

    Article  PubMed  CAS  Google Scholar 

  46. Amabile N, Heiss C, Chang V, Angeli FS, Damon L, Rame EJ, McGlothlin D, Grossman W, De Marco T, Yeghiazarians Y (2009) Increased CD62e(+) endothelial microparticle levels predict poor outcome in pulmonary hypertension patients. J Heart Lung Transplant 28:1081–1086

    Article  PubMed  Google Scholar 

  47. Daniel L, Fakhouri F, Joly D, Mouthon L, Nusbaum P, Grunfeld JP, Schifferli J, Guillevin L, Lesavre P, Halbwachs-Mecarelli L (2006) Increase of circulating neutrophil and platelet microparticles during acute vasculitis and hemodialysis. Kidney Int 69:1416–1423

    PubMed  CAS  Google Scholar 

  48. Distler JH, Huber LC, Gay S, Distler O, Pisetsky DS (2006) Microparticles as mediators of cellular cross-talk in inflammatory disease. Autoimmunity. 39:683–690

    Article  PubMed  CAS  Google Scholar 

  49. Kümpers P, Erdbrügger U, Grossheim M, Meyer GP, Hiss M, Gwinner W, Haller H, Haubitz M (2008) Endothelial microparticles as a diagnostic aid in Churg-Strauss vasculitis-induced cardiomyopathy. Clin Exp Rheumatol 26:S86–S89

    PubMed  Google Scholar 

  50. Davizon P, López JA (2009) Microparticles and thrombotic disease. Curr Opin Hematol 16:334–341

    Article  PubMed  Google Scholar 

  51. Sabatier F, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F (2009) Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. J Cell Mol Med 13:454–471

    Article  PubMed  CAS  Google Scholar 

  52. Barry OP, Praticò D, Savani RC, FitzGerald GA (1998) Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 102:136–144

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from Fresenius Medical Care, Bad Homburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bulut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulut, D., Scheeler, M., Niedballa, L.M. et al. Effects of immunoadsorption on endothelial function, circulating endothelial progenitor cells and circulating microparticles in patients with inflammatory dilated cardiomyopathy. Clin Res Cardiol 100, 603–610 (2011). https://doi.org/10.1007/s00392-011-0287-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-011-0287-2

Keywords

Navigation