Skip to main content
Log in

Evolution of paced QRS and QTc intervals in children with epicardial pacing leads

  • ORIGINAL PAPER
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Aims

Permanent ventricular pacing in children is associated with ventricular dysfunction due to asynchronous activation. It is unclear whether paced QRS intervals increase disproportionately over time, which could potentially cause ventricular dysfunction.

Methods

A total of 52 children, with bipolar steroideluting epicardial leads implanted at a median age of 5.6 years (0.0–17.4), was analyzed and followed up to 12.2 years (median 3.7). Patients were subdivided in two groups: right (RV, n = 21) and left (LV, n = 31) ventricular pacing. To correct for age, standard deviation scores (Z-scores) for paced QRS and QTc intervals were calculated from published standard-ECG norm-values. As a measure for individual paced QRS and QTc interval changes, a regression slope coefficient (inclinei) was calculated for each patient’s course.

Results

Mean Z-scores for paced QRS intervals at first and last follow-up were 4.7 ± 1.2 and 4.9 ± 0.9 for group RV, 4.4 ± 1.1 and 4.8 ± 1.1 for group LV. Inclinei of paced QRS (group RV: 0.038 [–0.27–0.12], group LV: 0.147 [–0.05–0.30]; p = 0.07) and QTc intervals (group RV: 0.026 [–0.08–0.06], group LV: 0.023 [–0.04–0.09]; p = 0.63) did not differ between both groups and indicated limited interval changes over time.

Conclusion

Neither epicardial pacing of the right nor left ventricle caused disproportionate paced QRS or QTc interval increases over time. An age-related prolongation of the electrical activation unlikely causes ventricular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedetto JB, Grayburn PA, Black WH et al (1990) Alterations in left ventricular relaxation during atrioventricular pacing in humans. J Am Coll Cardiol 15:658–664

    Article  Google Scholar 

  2. Adomian GE, Beazell J (1986) Myofibrillar disarray produced in normal hearts by chronic electrical pacing. Am Heart J 112:79–83

    Article  PubMed  CAS  Google Scholar 

  3. Prinzen FW, Augustijn CH, Allessie MA, Reneman RS (1990) Redistribution of myocardial fiber strain and blood flow by asynchronous activation. Am J Physiol 259:300–308

    Google Scholar 

  4. Karpawich PP (2004) Chronic right ventricular pacing and cardiac performance: The pediatric perspective. Pacing Clin Electrophysiol 27:844–849

    Article  PubMed  Google Scholar 

  5. Vernooy K, Verbeek XA, Peschar M et al (2005) Left bundle branch block induces ventricular remodeling and functional septal hypoperfusion. Eur Heart J 26:91–98

    Article  PubMed  Google Scholar 

  6. Garson A Jr (1998) Electrocardiography. In: Garson A Jr, Bricker JT, Fisher DJ, Neish SR (eds) The Science of Pediatric Cardiology, 2nd edn. MD Baltimore, Williams & Wilkins, pp 713–788

  7. Tantengco MV, Thomas RL, Karpawich PP (2001) Left ventricular dysfunction after long-term right ventricular apical pacing in the young. J Am Coll Cardiol 37:2093–2100

    Article  PubMed  CAS  Google Scholar 

  8. Thambo JB, Bordachar P, Garrigue S et al (2004) Detrimental ventricular remodeling in patients with congenital heart block and chronic right ventricular apical pacing. Circulation 110:3766–3772

    Article  PubMed  Google Scholar 

  9. Karpawich PP, Mital S (1997) Comparative left ventricular function following atrial, septal and apical single chamber heart pacing in the young. Pacing Clin Electrophysiol 20:1983–1988

    Article  PubMed  CAS  Google Scholar 

  10. Tse HF, Yu C, Wong KK et al (2002) Functional abnormalities in patients with permanent right ventricular pacing: the effect of sites of electrical stimulation. J Am Coll Cardiol 40: 1451–1458

    Article  PubMed  Google Scholar 

  11. Vanagt WY, Verbeek XA, Delhaas T, Mertens L, Daenen WJ, Prinzen FW (2004) The left ventricular apex is the optimal site for pediatric pacing: correlation with animal experience. Pacing Clin Electrophysiol 27:837–843

    Article  PubMed  Google Scholar 

  12. Vanagt WY, Verbeek XA, Delhaas T, et al (2005) Acute hemodynamic benefit of left ventricular apex pacing in children. Ann Thorac Surg 79:932–936

    Article  PubMed  Google Scholar 

  13. Karpawich PP, Rabah R, Haas JE (1999) Altered cardiac histology following apical right ventricular pacing in patients with congenital atrioventricular block. Pacing Clin Electrophysiol 22:1372–1377

    Article  PubMed  CAS  Google Scholar 

  14. Van Oosterhout MFM, Prinzen FW, Arts T et al (1998) Asynchronous electrical activation induces asymmetrical hypertrophy of left ventricular wall. Circulation 98:588–595

    PubMed  CAS  Google Scholar 

  15. Prinzen FW, Hunter WC, Wyman BT, Mc Veigh ER (1999) Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol 33:1735–1742

    Article  PubMed  CAS  Google Scholar 

  16. Spragg DD, Akar FG, Helm RH, Tunin RS, Tomaselli GF, Kass DA (2005) Abnormal conduction and repolarization in late-activated myocardium of dyssynchronously contracting hearts. Cardiovasc Research 67:77–86

    Article  CAS  Google Scholar 

  17. Akar FG, Spragg DD, Tunin RS, Kass DA, Tomaselli GF (2004) Mechanisms underlying conduction slowing and arrythmogenesis in nonischemic dilated cardiomyopathy. Circulation Research 95:717–725

    Article  PubMed  CAS  Google Scholar 

  18. Epstein AE, Kay NK, Plump VG, Dailey SM, Anderson PG (1998) Gross and microscopic pathological changes associated with nonthoracotomy implantable defibrillator leads. Circulation 98:1517–1524

    PubMed  CAS  Google Scholar 

  19. Higashi Y, Sato T, Shimojima H et al (2003) Mechanism of decrease in the atrial potential after implantation of a single-leadVDDpacemaker: Atrial histological changes after implantation of a VDD pacemaker lead in dogs. Pacing Clin Electrophysiol 26:685–691

    Article  PubMed  Google Scholar 

  20. Radovsky AS, Van Vleet JF (1989) Effects of dexamethasone elution on tissue reaction around stimulating electrodes of endocardial pacing leads in dogs. Am Heart Journal 117:1288–1298

    Article  CAS  Google Scholar 

  21. Hamilton R, Gow R, Bahoric B, Griffiths J, Freedom R, Williams W (1991) Steroid-eluting epicardial leads in pediatrics: improved epicardial thresholds in the first year. Pacing Clin Electrophysiol 14:2066–2072

    Article  PubMed  CAS  Google Scholar 

  22. Cohen MI, Bush DM, Vetter VL et al (2001) Permanent epicardial pacing in pediatric patients: seventeen years of experience and 1200 outpatients. Circulation 103:2585–2590

    PubMed  CAS  Google Scholar 

  23. Miyoshi F, Kobayashi Y, Itou H et al (2005) Prolonged paced QRS duration as a predictor for congestive heart failure in patients with right ventricular apex pacing. Pacing Clin Electrophysiol 28:1182–1188

    Article  PubMed  Google Scholar 

  24. Bax JJ, AbrahamT, Barold SS et al (2005) Cardiac resynchronization therapy. Part 2-Issues during and after device implantation and unresolved questions. J Am Coll Cardiol 46:2168–2182

    Article  PubMed  Google Scholar 

  25. Riedlbauchova L, Cihak R, Bytesnik J et al (2006) Optimization of right ventricular lead position in cardiac resynchronization therapy. Eur J Heart Fail 8:609–614

    Article  PubMed  Google Scholar 

  26. Cazeau S, Bordachar P, Jauvert G, et al (2003) Echocardiographic modeling of cardiac dyssynchrony before and during multisite stimulation: a prospective study. Pacing Clin Electrophysiol 26:137–143

    Article  PubMed  CAS  Google Scholar 

  27. Pitzalis MV, Iacoviello M, Romito, R et al (2005) Ventricular asynchrony predicts better outcome in patients with chronic heart failure receiving cardiac resynchronization therapy. J Am Coll Cardiol 45:65–69

    Article  PubMed  Google Scholar 

  28. Goetze S, Butter C, Fleck (2006) Cardiac resynchronization therapy for heart failure – From experimental pacing to evidence-based therapy. Clin Res Cardiol (Suppl 4) 95:18–35

    Article  Google Scholar 

  29. Bleeker GB, Schalij MJ, Molhoek SG, et al (2004) Relationship between QRS duration and left ventricular dyssynchrony in patients with endstage heart failure. J Cardiovasc Electrophysiol 15:544–549

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Tomaske MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomaske, M., Harpes, P., Prêtre, R. et al. Evolution of paced QRS and QTc intervals in children with epicardial pacing leads. Clin Res Cardiol 96, 787–793 (2007). https://doi.org/10.1007/s00392-007-0558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-007-0558-0

Key words

Navigation