Skip to main content
Log in

Increased cardiac mRNA expression of matrix metalloproteinase-1 (MMP–1) and its inhibitor (TIMP–1) in DCM patients

  • ORIGINAL PAPER
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Summary

Left ventricular dilation and myocardial remodeling are hallmarks of dilated cardiomyopathy (DCM). It is assumed that left ventricular dilation is caused by the disintegration of the collagenous network by increased collagenolytic activity of matrix metalloproteinases (MMPs) and their adequate tissue inhibitors (TIMPs).

In this study the myocardial MMP–1 and TIMP–1 mRNA expressions were investigated by using real–time quantitative PCR analysis from right septal endomyocardial biopsies of patients with dilated cardiomyopathy (n = 46) and control subjects (n = 11). The volume density (Vv%) of collagen was measured morphometrically. Classification was done according to LV diameters [left ventricular enddiastolic diameter (LVEDD, cm) calculated to body surface area (BSA, m2)] into three DCM groups: group I (LVEDD–BSA > 2.7–3.0 cm/m2), group II ( > 3.0–3.6 cm/m2), group III ( > 3.6 cm/m2), controls (< 2.7 cm/m2).

Compared with controls, the MMP–1 expression in patients with DCM was significantly increased (119.2 ± 45.2 vs. 1.3 ± 0.4; p < 0.001) as was TIMP–1 expression (9.6 ± 1.2 vs. 1.3 ± 0.4; p < 0.01). Moreover the MMP–1 and TIMP–1 expression varied according to LV diameter: group I (MMP–1: 8.7 ± 3.5; p = 0.33; TIMP– 1: 4.5 ± 1.2; p < 0.01); group II (MMP–1: 211.4 ± 86.0; p < 0.001; TIMP–1: 12.5 ± 1.9 ; p < 0.001); group III (MMP–1: 38.8 ± 22.6; p < 0.01; TIMP–1: 8.1 ± 1.7; p < 0.001). Compared with controls, the collagen level in DCMPt. was significantly increased: 5.0 ± 0.6 vol% vs 1.2 ± 0.2 vol% p < 0.001 and correlates with LV diameter. This study reveals that the overexpression of MMP–1, which is associated with an increased ratio of MMP–1/TIMP–1 in DCM, indicates an activated collagenolytic system while replacement fibrosis is accumulating. The MMP–1 overexpression is mainly found in moderately dilated DCM hearts (group II) indicating the dynamic process of LV dilation and the importance of collagenases in the early phase of LV remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson B, Caidahl K, Waagstein F, Olofsson E (1995) Idiopathic dilated cardiomyopathy among Swedish patients with congestive heart failure. Eur Heart J 16:53–60

    CAS  PubMed  Google Scholar 

  2. Becker R, Haass M, Ick D, Krüger C, Bauer A, Senges–Becker JC, Voss F, Hilbel T, Niroomand F, Katus H, Schoes W (2003) Role of nonsustained ventricular tachycardia and programmed ventricular stimulation for risk stratification in patients with idiopathic dilated cardiomyopathy. Basic Res Cardiol 98(4):259–266

    PubMed  Google Scholar 

  3. Borg TK, Burgess ML (1993) Holding all together: organization and function( s) of the extracellular matrix of the heart. Heart Fail 8:230–238

    Google Scholar 

  4. Chadwick V, Thomas BS, Mytsi L, Coker BA, Zeller JL, Handy JR, Jackson Crumbley A, Spinale FG (1998) Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients whith endstage dilated cardiomyopathy. Circ 97:1708–1715

    Google Scholar 

  5. Dolley CM, McEwan JR, Henney AM (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77: 863–868

    Google Scholar 

  6. Donay A (2003) Differentielle Genexpression bei der dilatativen Kardiomyopathie. Dissertation: Justus–Liebig– Universität Gießen, S 1108

  7. Heid C, Stevens J, Livak K (1996) Real time quantitative PCR. Genome Res 6(10):986–994

    CAS  PubMed  Google Scholar 

  8. Herpel E, Singer S, Flechtenmacher C, Pritsch M, Sack F, Hagl S, Katus H, Haass M, Otto F, Schnabel PA (2005) Extracellular matrix proteins und matrix metalloproteinases differ between various right and left ventricular sites in endstage cardiomyopathies. Virch Arch 446:369–378

    Article  CAS  Google Scholar 

  9. Janicki JS (1995) Collagen degradation in the heart. In: Eghbali–Webb M (ed) Molecular biology of collagen matrix in the heart. Austin: Landes, pp 61–76

  10. Hongo M, Ryoke T, Schoenfeld J, Hunter N, Dalton R, Clark, Lowe D, Chien K, Ross Jr (2000) Effects of growth hormone on cardiac dysfunction and gene expression on genetic murine dilated cardiomyopathy. Bas Res Cardiol 95(6):431–441

    Article  CAS  Google Scholar 

  11. Kähäri VM, Saarialho–Kere U (1999) Matrix metalloproteinases and their inhibitors in tumour growth and invasion. Ann Med 31:34–45

    PubMed  Google Scholar 

  12. Klappacher G, Franzen P, Haab D, Mehrabi M, Binder M, Plesch K, Pacher R, Grimm M, Pribill I, Eichler HG (1995) Measuring extracellular matrix turnover in the serum of patients with idiopathic or ischemic dilated cardiomyopathy and impact on diagnosis and prognosis. Am J Cardiol 75(14):913–918

    Article  CAS  PubMed  Google Scholar 

  13. Kühl U, Noutsias M, Seeberg B, Schultheiss HP (1996) Immunohistological evidence for a chronic intramyocardial inflammatory process in dilated cardiomyopathy. Heart 75:295–300

    PubMed  Google Scholar 

  14. Kubo H, Margulies K, Piacentino V, Gaughan John, Houser S (2001) Patients with end–tage congestive heart failure treated with _–Adrenergic receptor antagonist have improved ventricular myocyte calcium regulatory protein abundance. Circ 104:1012– 1018

    CAS  Google Scholar 

  15. Lamparter, Maisch (2000) Bedeutung von Matrix Metalloproteinasen bei kardiovaskulären Erkrankungen. Z Kardiol 89:949–957

    Article  CAS  PubMed  Google Scholar 

  16. Li YY, Feldman A, Sun Y, Mc Thierman CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circ 98:1728–1734

    CAS  Google Scholar 

  17. Malberg H, Bauernschmitt R, Meyerfeld U, Schirdewan, Wessel N (2003) Kurzzeit–Analyse der Herzfrequenzturbulenz versus Variabilitätsparameter und Barorezeptorsensitivität bei Patienten mit dilatativer Kardiomypathie. Z Kardiol 92(7):547–557

    Article  CAS  PubMed  Google Scholar 

  18. Maquart F, Pickart L, Laurent M (1988) Stimulation of collagen synthesis in fibroblast cultures by the tripeptide– copper complex glycyl–L–histidyllysine– Cu2+. FEBS Lett 238:343–346

    Article  CAS  PubMed  Google Scholar 

  19. Maquart F, Bellon G, Pasco S, Monboisse J (2005) Matrikines in the regulation of extracellular matrix degradation. Biochimie 87(3–4):353–360

    Article  CAS  PubMed  Google Scholar 

  20. Marriott JB, Goldman JH, Keeling PJ, Baig MK, Dalgleish AG, McKenna WJ (1996) Abnormal cytokine profiles in patients with idiopathic dilated cardiomyopathy and their asymptomatic relatives. Heart 75:287–290

    CAS  PubMed  Google Scholar 

  21. Munger MA, Johnson B, Amber IJ, Callahan KS, Gilbert EM (1996) Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 77(9):723–727

    Article  CAS  PubMed  Google Scholar 

  22. Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378:151–158

    CAS  PubMed  Google Scholar 

  23. Nürnberg JH, Butter C, Abdul–Khalig H, Schlegl M, Lange PE (2005) Successful cardiac resynchronization therapy in a 9–year–old boy with dilated cardiomyopathy. Z Kardiol 94(1):44–48

    Article  PubMed  Google Scholar 

  24. Oie E, Yndestad A, Robin SP, Bornerheim R, Asberg A, Attramadal H (2002) Early intervention with a potent endothelin–A/endothelin–B receptor antagonist aggravates left ventricular remodeling after myocardial infarction in rats. Bas Res Cardiol 97(3):239–247

    Article  CAS  Google Scholar 

  25. Olivetti G, Capasso JMK, Sonnenblick EH, Anversa P (1990) Side to side slippage of myocytes participates in ventricular wall remodeling acurely after myocardial infarction in rats. Circ Res 67:23–24

    CAS  PubMed  Google Scholar 

  26. Ohtsuki M, Nomura T, Morimoto S, Hiramitsu S, Uemura A, Kato S, Kato Y, Shirasishi H, Shimokubo J, Yamamoto N, Hishida H (2005) Suppressed expression of GTP cyclohydrolase I mRNA and accelerated expression of inducible nitric oxide synthase mRNA in endomyocardial biopsy specimens from patients with dilated cardiomyopathy. Clin Chem Acta 353:103–107

    Article  CAS  Google Scholar 

  27. Pauschinger M, Knopf D, Petschauer S, Doerner A, Poller W, Schwimmbeck PC, Kühl U, Schultheiß, HP (1999) Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circ 99:2750–2756

    CAS  Google Scholar 

  28. Pauschinger M, Chandrasekharan K, Schultheiss HP (2004) Myocardial remodeling in viral heart disease: possible interactions between inflammatory mediators and MMP–/TIMP system. Heart Fail Rev 9:21–31

    Article  CAS  PubMed  Google Scholar 

  29. Ratajska A, Cleutjens J (2002) Embryogenesis of the rat heart: the expression of collagenases. Bas Res Cardiol 97(3):189–197

    Article  CAS  Google Scholar 

  30. Schwartzkopff B, Fassbach M, Pelzer B, Brehm M, Strauer BE (2002) Elevated serum markers of collagen degradation in patients with mild to moderate dilated cardiomyopathy. Eur J Heart Fail 4:439–444

    Article  CAS  PubMed  Google Scholar 

  31. Schwartzkopff B, Ühre B, Ehle B, Lässe B, Frenzel H (1987) Variability and reproducibility of morphological biopsies in hypetrophic obstructizee cardiomyopathie. Z Kardiol 76(3):14– 19

    PubMed  Google Scholar 

  32. Siu B, Niimura H, Osborne J, Fatkin D, MacRae C, Solomon S, Benson W, Seidman JG, Seidman C (1999) Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circ 99:1022–1026

    CAS  Google Scholar 

  33. Spinale FG (2002) Matrix metalloproteinases, regulation and dysregulation in the failing heart. Circ Res 90:520– 530

    Article  CAS  PubMed  Google Scholar 

  34. Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T, Goldberg AT, Zellner JL, Crumbley AJ (2000) A matrix metalloproteinase induction/ activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circ 102:1944–1949

    CAS  Google Scholar 

  35. Spinale FG, Coker ML, Krombach SR, Mukherjee R, Hallak H, Houck WV, Clair MJ, Kribbs SB, Johnson LL, Peterson JT, Zile MR (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res 85(4):364–376

    CAS  PubMed  Google Scholar 

  36. Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L (1998) Time–dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res 82:482–495

    CAS  PubMed  Google Scholar 

  37. Strauer BE, Kandolf R, Mall G, Maisch B, Mertens T, Figulla HR, Schwartzkopff B, Brehm M, Schultheiß HP (2001) Myokarditis – Kardiomyopathie, Update 2001. Med Klin 96:608–625

    CAS  Google Scholar 

  38. Taipale J, Keski–Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11:51–59

    CAS  PubMed  Google Scholar 

  39. Tyagi SC (1998) Extracellular matrix dynamics in heart failure: a prospect for gene therapy. J Cell Biochem 68:403–410

    Article  CAS  PubMed  Google Scholar 

  40. Tyagi SC, Campbell SE, Reddy HK, Tjahja E, Voelker DJ (1996) Matrix metalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts. Mol Cell Biochem 155:13–21

    Article  CAS  PubMed  Google Scholar 

  41. Tyagi SC, Kumar S, Voelker DJ, Reddy HK, Janicki JS, Curtis JJ (1996) Differential gene expression of extracellular matrix components in dilated cardiomyopathy. J Cell Biochem 63(2):185–198

    Article  CAS  PubMed  Google Scholar 

  42. Tyagi SC, Kumar SG, Banks J, Fortson W (1995) Co–expression of tissue inhibitor and matrix metalloproteinase in myocardium. J Mol Cell Cardiol 27(10):2177–2189

    Article  CAS  PubMed  Google Scholar 

  43. Weber K, Anversa P, Armstrong P, Brilla C, Burnett J, Cruickshank JM, Devereux RB, Giles TD, Korsgaard N, Leier CV, Mendelsohn FAO, Motz WH, Mulvany MJ, Strauer BE (1992) Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol 20:3–16

    Article  CAS  PubMed  Google Scholar 

  44. Woessner JF, Nagase H (2000) Activation of the zymogen forms of MMPs. In: Matrix Metalloproteinases and TIMPs. Oxford University Press, New York, pp 72–86

  45. Youn T, Kim H, Oh B (2002) Ventricular remodeling and transforming growth factor 1 mRNA expression after nontranmural myocardial infarction in rats: effects of angiotensin converting enzyme inhibition and angiotensin II type 1 receptor blockade. Basic Res Cardiol 94(4):246–253

    Article  Google Scholar 

  46. Zhao M, Zhang H, Robinson TF, Factor SM, Sonnenblick EH (1987) Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional (stunned) but viable myocardium. J Am Coll Cardiol 10:1322–1334

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frauke Picard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picard, F., Brehm, M., Fassbach, M. et al. Increased cardiac mRNA expression of matrix metalloproteinase-1 (MMP–1) and its inhibitor (TIMP–1) in DCM patients. Clin Res Cardiol 95, 261–269 (2006). https://doi.org/10.1007/s00392-006-0373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-006-0373-z

Key words

Navigation