Skip to main content
Log in

Comparative study of tacrolimus and paclitaxel stent coating in the porcine coronary model

Vergleichsstudie einer Stentbeschichtung mit Paclitaxel und Tacrolimus im porcinen Modell der experimentellen Koronarläsion

  • ORIGINAL PAPER
  • Published:
Zeitschrift für Kardiologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

In-vitro-Untersuchungen zeigen für Tacrolimus einen antiproliferativen Effekt auf glatte Gefäßmuskelzellen bei geringer Wirkung auf Endothelzellen. Ziel der vorliegenden Untersuchung war der Vergleich einer Stentbeschichtung auf Polymerbasis mit Paclitaxel und Tacrolimus.

Methoden und Ergebnisse

Bei 40 Haus- und 10 Minischweinen wurden Stents in LAD und CX implantiert mit einer Nachbeobachtungsdauer zwischen 6 Stunden und 3 Monaten.

Nach 3 Tagen führte eine Stentbeschichtung mit 1.73 μg Tacrolimus/mm2 zu Gewebespiegeln von 20 μmol/l in der Koronararterienwand. Antiproliferativ wirksame Gewebespiegel fanden sich bis zu 28 Tagen nach Stentimplantation. Die Tacrolimus beschichteten Stents führten zu einer signifikanten Reduktion der Neointimabildung um 51% nach 28 Tagen im Vergleich zur Kontrollgruppe. Eine hohe Dosis von Paclitaxel auf dem Stent (1.44 μg/mm2) führte gehäuft zu unerwarteten Todesfällen und angiographisch dokumentierten thrombotischen Stentverschlüssen. Nach 3 Monaten zeigte sich weder mit Tacrolimus noch mit Paclitaxel eine persistierende Hemmung der Neointimabildung.

Schlussfolgerung

Tacrolimus führt ähnlich wie Paclitaxel zu einer verminderten Neointimabildung im porcinen Modell der experimentellen Koronarläsion. Dosierung des antiproliferativen Wirkstoffes und Langzeiteffektivität stellen kritische Parameter der Stent-basierten lokalen Medikamentenapplikation dar.

Summary

Background

Tacrolimus is a potent antiproliferative and immunosuppressive agent allowing for improved endothelial regeneration. The aim of our study was the preclinical evaluation of tacrolimus in a drug eluting nonerodable polymer stent system and its comparison with paclitaxel.

Methods and results

A total of 40 domestic pigs and 10 mini-pigs underwent coronary stenting with a follow-up time between 6 hours and 3 months. Stents were implanted in coronary arteries with an overstretch ratio of 1.2. After 3 days, a 1.73 μg/mm2 coating produced tacrolimus tissue levels of 20 μmol/l in the coronary artery wall. Effective tissue concentrations were sustained for 28 days. Based on histomorphometric analysis, tacrolimus stent treated vessels had a reduced extent of neointima formation compared with controls at 28 days (–51% compared to control) but not at 3 months. High dose paclitaxel stent coating (1.44 μg/mm2) was complicated by unexpected deaths of pigs and thrombotic stent occlusion at control angiography. Long-term porcine data showed no persistent inhibition of neointimal growth by paclitaxel and tacrolimus stent coating.

Conclusions

Similar to paclitaxel, tacrolimus stent coating reduces neointimal proliferation in the porcine coronary model. However, dosing and long-term efficacy remains a critical issue in stent-based local drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Suzuki T, Kopia G, Hayashi S, et al (2001) Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation 104:1188–1193

    CAS  PubMed  Google Scholar 

  2. Morice MC, Serruys PW, Sousa JE, et al (2002) A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 346:1773–1780

    CAS  PubMed  Google Scholar 

  3. Moses JW, Leon MB, Popma JJ, et al (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349:1315–1323

    CAS  PubMed  Google Scholar 

  4. Heldman AW, Cheng L, Jenkins GM, et al (2001) Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation 103:2289–2295

    CAS  PubMed  Google Scholar 

  5. Grube E, Silber S, Hauptmann KE, et al (2003) TAXUS I: six- and twelve-month results from a randomized, doubleblind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation 107:38–42

    CAS  PubMed  Google Scholar 

  6. Stone GW, Ellis SG, Cox DA, et al (2004) A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 350:221–231

    CAS  PubMed  Google Scholar 

  7. Virmani R, Guagliumi G, Farb A, et al (2004) Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation 109:701–705

    PubMed  Google Scholar 

  8. McFadden EP, Stabile E, Regar E, et al (2004) Late thrombosis in drugeluting coronary stents after discontinuation of antiplatelet therapy. Lancet 364:1519–1521

    CAS  PubMed  Google Scholar 

  9. Rowinsky EK, Donehower RC. Paclitaxel (taxol) (1995) N Engl J Med; 332:1004–1014

    CAS  PubMed  Google Scholar 

  10. Scheller B, Speck U, Schmitt A, Böhm M, Nickenig G (2003) Addition of Paclitaxel to contrast media prevents restenosis after coronary stent implantation. J Am Coll Cardiol 42:1415–1420

    CAS  PubMed  Google Scholar 

  11. Zohlnhöfer D, Klein CA, Richter T, et al (2001) Gene expression profiling of human stent-induced neointima by cDNA array analysis of microscopic specimens retrieved by helix cutter Aatherectomy. Detection of FK506-binding protein 12 upregulation. Circulation 103:1396–1402

    PubMed  Google Scholar 

  12. Griffith JP, Kim JL, Kim EE, et al (1995) X-ray structure of calcineurin inhibited by the immunophilin-immunosppressant FKBP12-FK506 complex. Cell 82:507–522

    CAS  PubMed  Google Scholar 

  13. Matter MC, Wnendt S, Kurz DJ, et al (2002) Tacrolimus, but not sirolimus targets human vascular smooth muscle cells, but spares endothelial cells—Implications for drug-eluting stents. Eur Heart J 4 (Abstr. Suppl):143

    Google Scholar 

  14. Mohacsi PJ, Tüller D, Hulliger B, Wijngaard P (1997) Different inhibitory effects of immunosuppressive drugs on human and rat aortic smooth muscle and endothelial cell proliferation stimulated by platelet-derived growth factor or endothelial cell growth factor. J Heart Lung Transplant 16:484–492

    CAS  PubMed  Google Scholar 

  15. Wieneke H, Dirsch O, Sawitowski T, et al (2003) Catheter Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits. Cardiovasc Interv 60:399-407

    Google Scholar 

  16. Schwartz RS, Holmes DR, Topol EJ (1992) The restenosis paradigm revisited: an alternative proposal for cellular mechanisms. J Am Coll Cardiol 20:1284–1293

    CAS  PubMed  Google Scholar 

  17. Kornowski R, Hong MK, Tio FO, Bramwell O, Wu H, Leon MB (1998) In-stent restenosis contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol 31:224–230

    CAS  PubMed  Google Scholar 

  18. Colombo A, Drzewiecki J, Banning A, et al (2003) Randomized study to assess the effectiveness of slow- and moderate-release polymer-based Paclitaxel eluting stents for coronary artery lesions. Circulation 108:788–794

    CAS  PubMed  Google Scholar 

  19. Costa MA, Sabate M, van der Giessen WJ et al (1999) Late coronary occlusion after intracoronary brachytherapy. Circulation 100:789–792

    CAS  PubMed  Google Scholar 

  20. Kozuma K, Costa MA, Sabate M, et al (1999) Late stent malapposition occurring after intracoronary beta-irradiation detected by intravascular ultrasound. J Invasive Cardiol 11:651–655

    CAS  PubMed  Google Scholar 

  21. Albiero R, Nishida T, Adamian M, et al (2000) Edge restenosis after implantation of high activity (32)P radioactive beta-emitting stents. Circulation 101:2454–2457

    CAS  PubMed  Google Scholar 

  22. van der Giessen WJ, Lincoff AM, Schwartz RS, et al (1996) Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94:1690–1697

    CAS  PubMed  Google Scholar 

  23. Farb A, Heller PF, Shroff S, et al (2001) Pathological analysis of local delivery of paclitaxel via a polymercoated stent. Circulation 104:473–479

    CAS  PubMed  Google Scholar 

  24. Carter AJ, Aggarwal M, Kopia GA, et al (2002) Long-term effects of polymer-based, slow-release, sirolimuseluting stents in a porcine coronary model. Cardiovasc Res 63:617–624

    Google Scholar 

  25. Poon M, Badimon JJ, Fuster V (2002) Overcoming restenosis with sirolimus: from alphabet soup to clinical reality. Lancet 359:619–622

    PubMed  Google Scholar 

  26. Virmani R, Farb A, Kolodgie F (2002) Histopathologic alterations after endovascular radiation and antiproliferative stents: similarities and differences. Herz 27:1–6

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Scheller MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheller, B., Grandt, A., Wnendt, S. et al. Comparative study of tacrolimus and paclitaxel stent coating in the porcine coronary model. ZS Kardiologie 94, 445–452 (2005). https://doi.org/10.1007/s00392-005-0237-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-005-0237-y

Schlüsselwörter

Key words

Navigation