Skip to main content
Log in

Balance and mobility in geriatric patients

Assessment and treatment of neurological aspects

Gleichgewicht und Mobilität bei geriatrischen Patienten

Beurteilung und Behandlung neurologischer Aspekte

  • Themenschwerpunkt
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

Background

Personal autonomy in advanced age critically depends on mobility in the environment. Geriatric patients are often not able to walk safely with sufficient velocity. In many cases, multiple factors contribute to the deficit. Diagnostic identification of single components enables a specific treatment.

Objective

This article describes the most common neurological causes of imbalance and impaired gait that are relevant for a pragmatic approach for the assessment of deficits in clinical and natural environments taking into account the physiology of balance and gait control, typical morbidities in older people and the potential of innovative assessment technologies.

Material and methods

Expert opinion based on a narrative review of the literature and with reference to selected research topics.

Results and discussion

Common neurological causes of impaired balance and mobility are sensory deficits (reduced vision, peripheral neuropathy, vestibulopathy), neurodegeneration in disorders with an impact on movement control and motoric functions (Parkinsonian syndromes, cerebellar ataxia, vascular encephalopathy) and functional (psychogenic) disorders, particularly a fear of falling. Clinical tests and scores in laboratory environments are complemented by the assessment in the natural environment. Wearable sensors, mobile smartphone-based assessment of symptoms and functions and adopted strategies for analysis are currently emerging. Use of these data enables a personalized treatment. Furthermore, sensor-based assessment ensures that effects are measured objectively.

Zusammenfassung

Hintergrund

Der Erhalt der Autonomie im Alter hängt wesentlich von den Möglichkeiten der selbstbestimmten Mobilität in der jeweiligen Lebensumgebung ab. Die Fähigkeit, mit ausreichender Geschwindigkeit und Sicherheit zu gehen, ist bei geriatrischen Patienten oft beeinträchtigt, und mehrere Faktoren tragen zu dieser Einschränkung bei. Die Komponentendiagnostik alltagsrelevanter Defizite erlaubt eine spezifische Behandlung.

Ziel der Arbeit

Auf Basis der Kenntnis der Physiologie der Gleichgewichtserhaltung und der typischen Morbidität älterer Menschen, sowie den aktuellen Innovationen im Bereich der diagnostischen Technologien wird ein pragmatisches Vorgehen bei der Erfassung von Mobilitätsdefiziten in Klinik und Alltagsumgebung vorgeschlagen.

Material und Methoden

Expertenmeinung mit Recherche und Einbeziehung von Literatur und Forschungsthemen.

Ergebnisse und Diskussion

Besonders häufige neurologische Komponenten der Störung von Mobilität und Gleichgewicht sind sensorische Defizite (Visusminderung, Polyneuropathie, Vestibulopathie), neurodegenerative Erkrankungen mit Auswirkungen auf Bewegungskontrolle und motorische Funktion (Parkinson-Syndrome, Kleinhirnataxie, vaskuläre Enzephalopathie) sowie die funktionellen (psychischen) Komponenten, insbesondere die Angst zu stürzen. Zur Erweiterung der Untersuchung in Klinik und Praxis ist das Erfassen von Einschränkungen in der Alltagsumgebung wichtig. Tragbare Sensoren und mobile, Smartphone-basierte Symptom- und Funktionserfassung, sowie digital unterstützte Auswertungsstrategien werden derzeit entwickelt. Die Therapie kann damit auf die alltagsrelevanten Einschränkungen zugeschnitten und objektiv bewertet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agrawal Y, Carey JP, Santina DCC et al (2009) Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001–2004. Arch Intern Med 169:938–944

    Article  Google Scholar 

  2. Ambrose AF, Noone ML, Pradeep VG et al (2010) Gait and cognition in older adults: insights from the Bronx and Kerala. Ann Indian Acad Neurol 13:99–103

    Article  Google Scholar 

  3. Arber S (2017) Organization and function of neuronal circuits controlling movement. EMBO Mol Med 9:281–284

    Article  CAS  Google Scholar 

  4. Bachor E, Wright CG, Karmody CS (2002) The incidence and distribution of cupular deposits in the pediatric vestibular labyrinth. Laryngoscope 112:147–151

    Article  Google Scholar 

  5. Beauchet O, Allali G, Thiery S et al (2011) Association between high variability of gait speed and mild cognitive impairment: a cross-sectional pilot study. J Am Geriatr Soc 59:1973–1974

    Article  Google Scholar 

  6. Bergmann J, Kreuzpointner MA, Krewer C et al (2015) The subjective postural vertical in standing: reliability and normative data for healthy subjects. Atten Percept Psychophys 77:953–960

    Article  Google Scholar 

  7. Bohnen NI, Jahn K (2013) Imaging: What can it tell us about parkinsonian gait? Mov Disord 28:1492–1500

    Article  Google Scholar 

  8. Bridenbaugh SA, Kressig RW (2015) Motor cognitive dual tasking: early detection of gait impairment, fall risk and cognitive decline. Z Gerontol Geriatr 48:15–21

    Article  Google Scholar 

  9. Dieterich M, Brandt T (2008) Functional brain imaging of peripheral and central vestibular disorders. Brain 131:2538–2552

    Article  Google Scholar 

  10. Eskofier EM, Sunghoohn IL, Baron M et al (2017) An overview of smart shoes in the internet of health things: gait and mobility assessment in health promotion and disease monitoring. Appl Sci (Basel) 7:986–1002

    Article  Google Scholar 

  11. Espay AJ, Bonato P, Nahab FB et al (2016) Technology in Parkinson’s disease: challenges and opportunities. Mov Disord 31:1272–1282

    Article  Google Scholar 

  12. Freiberger E (2018) Cognition and mobility : the influence of the brain on gait. Internist 59:316–325

    Article  CAS  Google Scholar 

  13. Fritz S, Lusardi M (2009) White paper: “walking speed: the sixth vital sign”. J Geriatr Phys Ther 32:46–49

    Article  Google Scholar 

  14. Furman JM, Raz Y, Whitney SL (2010) Geriatric vestibulopathy assessment and management. Curr Opin Otolaryngol Head Neck Surg 18:386–391

    Article  Google Scholar 

  15. Gassner H, Marxreiter F, Steib S et al (2017) Gait and cognition in Parkinson’s disease: cognitive impairment is inadequately reflected by gait performance during dual task. Front Neurol 8:550

    Article  Google Scholar 

  16. Grillner S (1981) Control of locomotion in bipeds, tetrapods and fish. In: Brooks VB (ed) Motor control, part 2. Handbook of physiology, the nervous system, vol II. American Physiological Society, Bethesda, MD, pp 1179–1236

    Google Scholar 

  17. Grillner S, Wallen P (1985) Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci 8:233–261

    Article  CAS  Google Scholar 

  18. Herdman SJ (2013) Vestibular rehabilitation. Curr Opin Neurol 26:96–101

    Article  Google Scholar 

  19. Jacobs AH, Bollheimer C (2019) Frailty. In: Maetzler WDR, Jacobs AH (eds) Neurogeriatrie: ICF-basierte Diagnose und Behandlung. Springer, Berlin, pp 49–68

    Chapter  Google Scholar 

  20. Jahn K, Deutschlander A, Stephan T et al (2008) Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 39:786–792

    Article  Google Scholar 

  21. Jahn K, Deutschländer A, Stephan T et al (2004) Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 22:1722–1731

    Article  Google Scholar 

  22. Jahn K, Kressig RW, Bridenbaugh SA et al (2015) Dizziness and unstable gait in old age: etiology, diagnosis and treatment. Dtsch Arztebl Int 112:387–393

    PubMed  PubMed Central  Google Scholar 

  23. Jahn K, Naessl A, Schneider E et al (2003) Inverse U‑shaped curve for age dependency of torsional eye movement responses to galvanic vestibular stimulation. Brain 126:1579–1589

    Article  Google Scholar 

  24. Jahn K, Saul AK, Elstner M et al (2018) Vestibular rehabilitation therapy and Nintendo Wii balance board training both improve postural control in bilateral vestibulopathy. J Neurol 265:70–73

    Article  Google Scholar 

  25. Jahn K, Zwergal A, Schniepp R (2010) Gait disturbances in old age: classification, diagnosis, and treatment from a neurological perspective. Dtsch Arztebl Int 107:306–315

    PubMed  PubMed Central  Google Scholar 

  26. Jonsson R, Sixt E, Landahl S et al (2004) Prevalence of dizziness and vertigo in an urban elderly population. J Vestib Res 14:47–52

    PubMed  Google Scholar 

  27. Kumar A, Delbaere K, Zijlstra GA et al (2016) Exercise for reducing fear of falling in older people living in the community: Cochrane systematic review and meta-analysis. Age Ageing 45:345–352

    Article  Google Scholar 

  28. Lopez I, Honrubia V, Baloh RW (1997) Aging and the human vestibular nucleus. J Vestib Res 7:77–85

    Article  CAS  Google Scholar 

  29. Mueller M, Strobl R, Jahn K et al (2014) Impact of vertigo and dizziness on self-perceived participation and autonomy in older adults: results from the KORA-Age study. Qual Life Res 23:2301–2308

    Article  Google Scholar 

  30. Mueller M, Strobl R, Jahn K et al (2014) Burden of disability attributable to vertigo and dizziness in the aged: results from the KORA-Age study. Eur J Public Health 24:802–807

    Article  Google Scholar 

  31. Payette MC, Belanger C, Leveille V et al (2016) Fall-related psychological concerns and anxiety among community-dwelling older adults: systematic review and meta-analysis. PlosOne 11:e152848

    Article  Google Scholar 

  32. Peterka RJ, Black FO, Schoenhoff MB (1990) Age-related changes in human vestibulo-ocular reflexes: sinusoidal rotation and caloric tests. J Vestib Res 1:49–59

    PubMed  Google Scholar 

  33. Reelick MF, Van Iersel MB, Kessels RP et al (2009) The influence of fear of falling on gait and balance in older people. Age Ageing 38:435–440

    Article  Google Scholar 

  34. Richter E (1980) Quantitative study of human Scarpa’s ganglion and vestibular sensory epithelia. Acta Otolaryngol 90:199–208

    Article  CAS  Google Scholar 

  35. Rosenhall U (1973) Degenerative patterns in the aging human vestibular neuro-epithelia. Acta Otolaryngol 76:208–220

    Article  CAS  Google Scholar 

  36. Schniepp R, Boerner JC, Decker J et al (2018) Noisy vestibular stimulation improves vestibulospinal function in patients with bilateral vestibulopathy. J Neurol 265:57–62

    Article  CAS  Google Scholar 

  37. Schniepp R, Wuehr M, Neuhaeusser M et al (2012) Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure. Mov Disord 27:125–131

    Article  Google Scholar 

  38. Schulein S, Barth J, Rampp A et al (2017) Instrumented gait analysis: a measure of gait improvement by a wheeled walker in hospitalized geriatric patients. J Neuroeng Rehabil 14:18

    Article  Google Scholar 

  39. Schwenk M, Zieschang T, Oster P, Hauer K (2010) Dual-task performance can be improved in patients with dementia. A randomized controlled trial. Baillieres Clin Neurol 74:1961–1968

    Google Scholar 

  40. Selge C, Schoeberl F, Zwergal A et al (2018) Gait analysis in PSP and NPH: Dual-task conditions make the difference. Baillieres Clin Neurol 90:e1021–e1028

    Google Scholar 

  41. Sloane PD, Baloh RW, Honrubia V (1989) The vestibular system in the elderly: clinical implications. Am J Otolaryngol 10:422–429

    Article  CAS  Google Scholar 

  42. Snijders AH, Van De Warrenburg BP, Giladi N et al (2007) Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol 6:63–74

    Article  Google Scholar 

  43. Steinhubl SR, Muse ED, Topol EJ (2015) The emerging field of mobile health. Sci Transl Med 7:283rv283

    Article  Google Scholar 

  44. Studenski S, Perera S, Patel K et al (2011) Gait speed and survival in older adults. JAMA 305:50–58

    Article  CAS  Google Scholar 

  45. Szmulewicz DJ, Waterston JA, Halmagyi GM et al (2011) Sensory neuropathy as part of the cerebellar ataxia neuropathy vestibular areflexia syndrome. Baillieres Clin Neurol 76:1903–1910

    CAS  Google Scholar 

  46. Todd C, Skelton D (2004) What are the main risk factors for falls among older people and what are the most effecxtive interventions to prevent these falls? WROfE, Copenhagen

    Google Scholar 

  47. Topol EJ, Steinhubl SR, Torkamani A (2015) Digital medical tools and sensors. JAMA 313:353–354

    Article  CAS  Google Scholar 

  48. Van Haastregt JC, Zijlstra GA, Van Rossum E et al (2008) Feelings of anxiety and symptoms of depression in community-living older persons who avoid activity for fear of falling. Am J Geriatr Psychiatry 16:186–193

    Article  Google Scholar 

  49. Velazquez-Villasenor L, Merchant SN, Tsuji K et al (2000) Temporal bone studies of hte human peripheral vestibular system. Normative Scarpa’s ganglion cell data. Ann Otol Rhinol Laryngol Suppl 181:14–19

    Article  CAS  Google Scholar 

  50. Verghese J, Annweiler C, Ayers E et al (2014) Motoric cognitive risk syndrome: multicountry prevalence and dementia risk. Baillieres Clin Neurol 83:718–726

    Google Scholar 

  51. Verghese J, Wang C, Lipton RB et al (2013) Motoric cognitive risk syndrome and the risk of dementia. J Gerontol 68:412–418

    Article  Google Scholar 

  52. Verghese J, Wang C, Lipton RB et al (2007) Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry 78:929–935

    Article  Google Scholar 

  53. Wuehr M, Schniepp R, Ilmberger J et al (2013) Speed-dependent temporospatial gait variability and long-range correlations in cerebellar ataxia. Gait Posture 37:214–218

    Article  CAS  Google Scholar 

  54. Zingler VC, Cnyrim C, Jahn K et al (2007) Causative factors and epidemiology of bilateral vestibulopathy in 255 patients. Ann Neurol 61:524–532

    Article  Google Scholar 

  55. Zwergal A, Linn J, Xiong G et al (2012) Aging of human supraspinal locomotor and postural control in fMRI. Neurobiol Aging 33:1073–1084

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Jahn.

Ethics declarations

Conflict of interest

K. Jahn, E. Freiberger, B.M. Eskofier, C. Bollheimer and J. Klucken declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahn, K., Freiberger, E., Eskofier, B.M. et al. Balance and mobility in geriatric patients. Z Gerontol Geriat 52, 316–323 (2019). https://doi.org/10.1007/s00391-019-01561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-019-01561-z

Keywords

Schlüsselwörter

Navigation