Skip to main content
Log in

Bedeutung und Einsatz der Beatmung bei akut dekompensierter Herzinsuffizienz

Importance and application of mechanical ventilation in acute decompensated heart failure

  • Leitthema
  • Published:
Intensivmedizin und Notfallmedizin

Zusammenfassung

Die akut dekompensierte chronische Herzinsuffizienz führt zu Vor- und Nachlastanstieg. Der Vorlastanstieg manifestiert sich in einem zunehmenden Grad von Lungenstauung bis hin zum Lungenödem. Die resultierenden Lungenfunktionsstörungen betreffen die Sauerstoffdiffusion, das Ventilations-Perfusions-Verhältnis, den Atemwegswiderstand und die Lungencompliance. In Abhängigkeit vom Grad der Störungen wird schließlich eine maschinelle Beatmung mit endexspiratorisch positivem Druck erforderlich sein, der als CPAP oder BiPAP via Maske bzw. als PEEP appliziert werden kann. Der endexspiratorisch positive Druck hat neben der Bedeutung für die Oxygenierung hämodynamische Konsequenzen, indem er die Vorlast beider Ventrikel herabsetzt. Dies stellt eine quasi kausale Therapie für den linken Ventrikel dar. Dadurch wird der Sauerstoffverbrauch des Myokards gesenkt und das Sauerstoffangebot an das Myokard erhöht. PEEP reduziert gleichzeitig die systolische linksventrikuläre Wandspannung. Die Nachlastsenkung bedeutet für den linken Ventrikel abermals Steigerung des Sauerstoffangebotes und Reduktion des Sauerstoffverbrauches. Damit wird Beatmung zu einer bedeutsamen Therapieoption im Endstadium der akut dekompensierten chronischen Herzinsuffizienz, bei akuter Herzinsuffizienz und im kardiogenen Schock.

Abstract

Acutely decompensated chronic heart failure causes increased left ventricular preload and afterload. Increasing preload manifests itself in conditions ranging from increasing degrees of pulmonary congestion to lung edema. The resulting disturbances of lung function affect oxygen diffusion, the ventilation/perfusion ratio, airway resistance, and lung compliance. Mechanical ventilation with positive endexpiratory pressure (PEEP), which can be applied using a CPAP or BiPAP mask, is then required depending on the severity of disturbed oxygenation. Beside the importance for oxygenation, PEEP has hemodynamic consequences. It reduces the preload of both ventricles and represents for the left ventricle a nearly causal treatment. Reduced preload reduces myocardial oxygen demand and increases myocardial oxygen supply. Simultaneously, PEEP reduces the systolic left ventricular wall tension. This reduction of afterload again implies increased oxygen supply and decreased myocardial oxygen demand. Artificial ventilation is an important treatment option of acutely decompensated chronic heart failure, acute left heart failure, and cardiogenic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Suter P (1979) Individuell adaptierter Einsatz verschiedener Beatmungsmethoden zur Therapie des akuten Lungenversagens. In: Ahnefeld FW, Bergmann H, Burri C (Hrsg) Akutes Lungenversagen. Klinische Anaesthesiologie und Intensivtherapie, Bd.20. Springer, Berlin Heidelberg New York, S 113

  2. Slutsky AS (1999) Lung injury by mechanical ventilation. Chest 116:9S–15S

    Article  PubMed  CAS  Google Scholar 

  3. Haque WA, Boehmer J, Clemson BS et al (1996) Hemodynamic effects of supplemental oxygen administration in congestive heart failure. J Am Coll Cardiol 27:353–357

    Article  PubMed  CAS  Google Scholar 

  4. ARDS network (2000) Ventilation with lower tidal volume as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  5. Bersten AD, Holt AW, Vedig AE et al (1991) Treatment of severe cardiogenic pulmonary edema with continuous positive airway pressure deliverd by face mask. N Engl J Med 325:1825–1830

    PubMed  CAS  Google Scholar 

  6. Pang D, Keenan SP, Cook DJ, Sibbald WJ (1998) The effects of positive pressure airway support on mortality and the need for intubation in cardiogenic pulmonary edema. Chest 114:1185–1192

    Article  PubMed  CAS  Google Scholar 

  7. Nadar S, Prasad N, Taylor RS, Lip GYH (2005) Positive pressure ventilation in the management of acute and chronic cardiac failure: a systematic review and meta-analysis. Int J Cardiol 99:171–185

    Article  PubMed  Google Scholar 

  8. Antonelli M, Conti G, Rocco M et al (1998) A comparison of non-invasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Engl J Med 339:429–435

    Article  PubMed  CAS  Google Scholar 

  9. Carlucci A, Richard JC, Wysocky M et al (2001) Noninvasive versus conventional mechanical ventilation. Am J Respir Crit Care Med 163:874–880

    PubMed  CAS  Google Scholar 

  10. Brochard L (2003) Mechanical ventilation: invasive versus non-invasive. Eur Respir J 22:31S–37S

    Article  Google Scholar 

  11. Mehta S, Jay GD, Woolard RH et al (1997) Randomized, prospective trial of bilevel versus continuous positive airway pressure in acute pulmonary edema. Crit Care Med 25:620–628

    Article  PubMed  CAS  Google Scholar 

  12. Bellone A, Monari A, Cortellaro F et al (2004) Myocardial infarction rate in acute pulmonary edema: nonvasive pressure support ventilation versus continuous positive airway pressure. Crit Care Med 32:1860–1865

    Article  PubMed  Google Scholar 

  13. American Thoracic Society (2001) International consensus conferences in intensive care medicine: nonivasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med 163:283–291

    Google Scholar 

  14. Pizov R, Cohen M, Weiss Y et al (1996) Positive end-expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med 24:1381–1387

    Article  PubMed  CAS  Google Scholar 

  15. Pinsky M (2004) Using ventilation-induced aortic pressure and flow variation to diagnose preload responsiveness. Intensive Care Med 30:1008–1010

    Article  PubMed  Google Scholar 

  16. Smiseth OA, Thompson CR, Ling H et al (1996) A potential clinical method for calculating transmural left ventricular filling pressure during positive end-expiratory pressure ventilation: an intraoperative study in humans. J Am Coll Cardiol 27:155–160

    Article  PubMed  CAS  Google Scholar 

  17. Connors AF, Speroff T, Dawson NV et al (1996) The effectiveness of right heart catheterization in the initial care ofcritically ill patients. SUPPORT Investigators. JAMA 276:889–897

    Article  PubMed  Google Scholar 

  18. Robotham JL, Lixfeld W, Holland L et al (1980) The effects of positive end-expiratory pressure on right and left ventricular performance. Am Rev Respir Dis 121:677–683

    PubMed  CAS  Google Scholar 

  19. Kubitz JC, Annecke T, Kemming GI et al (2006) The influence of positive end-expiratory pressure on the stroke volume variation and central blood volume during open and closed chest conditions. Eur J Card Thor Surg 30:90–95

    Article  Google Scholar 

  20. Pinsky M, Vincent JL, de Smet JM (1991) Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis 143:25–31

    PubMed  CAS  Google Scholar 

  21. Goepfert MS, Reuter DA, Akyol D et al (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33:96–103

    Article  PubMed  Google Scholar 

  22. Naughton MT, Rahman MA, Hara K et al (1995) Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation 91:1725–1731

    PubMed  CAS  Google Scholar 

  23. Pinsky M (2002) Recent advances in the clinical application of heart-lung interactions. Curr Opin Crit Care 8:26–31

    Article  PubMed  Google Scholar 

  24. Engelmann L, Petros S, Pankau H (2008) Right ventricular function in ARDS and mechanical ventilation. In: Esquinas Rodriguez AM (ed) Yearbook respiratory care clinics and applied technologies. San Nicolas, Tipografia, San Francisco, pp 385–395

  25. Frazier SK, Stone KS, Moser D et al (2006) Hemodynamic changes during discontinuation of mechanical ventilation in medical intensive care unit patients. Am J Crit Care 15:580–594

    PubMed  Google Scholar 

  26. Expertengruppe S3-Leitlinie: Kardiogener Schock nach Herzinfarkt (in Vorbereitung)

  27. Chatila W, Ani S, Guaglianone D et al (1996) Cardiac ischemia during weaning from mechanical ventilation. Chest 109:1577–1583

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Engelmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelmann, L. Bedeutung und Einsatz der Beatmung bei akut dekompensierter Herzinsuffizienz. Intensivmed 46, 391–398 (2009). https://doi.org/10.1007/s00390-009-0082-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00390-009-0082-8

Schlüsselwörter

Keywords

Navigation