Skip to main content
Log in

Infarktbedingter kardiogener Schock – Diagnose, Monitoring und Therapie

Infarct-related cardiogenic shock – Diagnosis, monitoring and therapy

  • Übersicht
  • Published:
Intensivmedizin und Notfallmedizin

Zusammenfassung

Bei Patienten mit ST-Streckenhebungsinfarkt (STEMI) und Nicht-ST-Streckenhebungsinfarkt (NSTEMI) kommt es in ca 6–10% der Fälle im Krankenhaus zu einem kardiogenen Schock. In den letzten Jahren scheint die Inzidenz aufgrund der invasiven Diagnostik und Therapie nach Myokardinfarkt sich leicht zu reduzieren. Neben der ischämieinduzierten Pumpfunktionsstörung kommt der Inflammation - vermittet durch Leukozyten- und Cytokinaktivierung - eine wichtige Rolle bei der Pathogenese und Prognose des kardiogenen Schocks zu.

Wichtig ist die frühzeitige Diagnose, um die schnelle Revaskularisation mittels PCI und Stent im Rahmen des kardiogenen Schocks einzuleiten und so eine deutliche Verbesserung des Überlebens zu erreichen. Mechanische Unterstützung und medikamentöse Therapien erlauben auch bei Hochrisikopatienten eine sichere und effektive Behandung. Mechanische und pharmakologische Unterstützung sind notwendig, um die Perfusion des Myokards und der Organe aufrecht zu erhalten. Als medikamentöse Therapie bei infarktbedingtem kardiogenem Schock hat sich Dobutamin als Inotropikum und Noradrenalin als Vasopressor etabliert. Zur weiteren Unterstützung liegen Daten zu Levosimendan und Erfahrungen mit PDE-IV-Hemmern vor. Dopamin und Adrenalin stehen als sekundäre Alternativen zur Verfügung. Neue Ansätze wie NOS Inhibitoren konnte in klinischen Studien keinen Wirkvorteil belegen. Die pharmakologische Therapie wird durch mechanische Unterstützungssysteme wie IABP, Impella oder ECMO ergänzt. Wichtig ist im Verlauf, durch organprotektive Massnahmen die Entstehung weiterer Organdysfunktionen (Niere, Leber, Lunge ua.) zu verhindern. Die Mehrzahl der Überlebenden des kardiogenen Schocks haben langfristig nur eine geringe funktionelle kardiale Einschränkungen, gleich bedeutend mit einer passageren Schädigungskomponente (Stunning, Inflammation), was die Sinnhaftigkeit einer schnellen Kreislauf-unterstützenden Therapie unterstreicht.

Abstract

In patients with STEMI or NSTEMI, cardiogenic shock will occur in approximately 6–10% of cases within the hospital. Mortality rate is still high (50–70%). However, due to early and aggressive invasive treatment of ACS patients, the incidence of cardiogenic shock is declining. Beside ischemic injury, inflammation due to leukocyte and cytokine activation play an important role in the pathogenesis and prognosis of cardiogenic shock patients.

Important is the early diagnosis of cardiogenic shock to initiate revascularization procedures with PCI and stents, which have shown short- and long-term improvement in survival. Currently, mechanical support (IABP) and drug therapy (dobutamine, norepinephrine) are necessary to stabilize myocardial and organ perfusion in high-risk patients. Firstline inotropic support can be archived with dobutamine and norepinephrine for vasopressor support. Recently, promising data exist supporting treatment with levosimendan in favor of PDE inhibitors for inotropic support in cardiogenic shock patients. Dopamine and epinephrine are second line alternatives. No therapeutic benefit could be demonstrated when using novel compounds like NOS inhibitors in CS patients. Promising effects were observed with mechanical support with rotary pumps like Impella or ECMO but need further study. Other organ functions like liver, kidney or lung have to be monitored continuously and protective measures should be used.

The majority of cardiogenic shock survivors have later only slightly decreased LV function, indicating short lasting causative injuries like inflammation or stunning. This concept supports circulatory support to overcome injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

ACS:

Akutes Koronarsyndrom

CPI/CPO:

Cardiac Power Index/Cardiac Power Output

HI:

Herzindex

IABP:

Intraaortale Ballonpumpe

IRA:

Infarkt-bezogene Arterie („Infarct related artery“)

MI:

Myokardinfarkt

MODS:

Multiples Organ-Dysfunktionssyndrom

NPN:

Nitroprussid-Natrium

NSTEMI:

Non-ST-Strecken-Elevations-Myokardinfarkt

PAK:

Pulmonalarterienkatheter

PAP:

Pulmonalarterieller Mitteldruck

PAOP:

Pulmonalarterieller Okklusionsdruck (pulmonalkapillarer „Wedge“-Druck, PCWP)

PCI:

Perkutane Koronarintervention („Percutaneous coronary intervention“)

STEMI:

ST-Strecken-Elevations-Myokardinfarkt („ST-elevation myocardial infarction“)

SVR:

Systemischer Gefäßwiderstand („Systemic vascular resistance“)

SvO2 :

Gemischtvenöse O2-Sättigung

TVR:

Revaskularisierung des Infarkt-Koronargefäßes („Target vessel revascularisation“)

ZVD:

Zentraler Venendruck

Literatur

  1. Babaev A, Frederick PD, Pasta DJ, Every N, Sichrovsky T, Hochman JS (2005) Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. Jama 294:448–454

    Article  PubMed  CAS  Google Scholar 

  2. Okuda M (2006) A multidisciplinary overview of cardiogenic shock. Shock 25:557–570

    PubMed  CAS  Google Scholar 

  3. Schuster HP, Schuster FP, Ritschel P, Wilts S, Bodmann KF (1997) The ability of the Simplified Acute Physiology Score (SAPS II) to predict outcome in coronary care patients. Intensive Care Med 23:1056–1061

    Article  PubMed  CAS  Google Scholar 

  4. Adams HA, Baumann G, Gansslen A, et al (2001) Definitionen der Schockformen. AINS 36 Suppl 2:S140–143

    Google Scholar 

  5. Hasdai D, Topol EJ, Califf RM, Berger PB, Holmes DR, Jr (2000) Cardiogenic shock complicating acute coronary syndromes. Lancet 356:749–756

    Article  PubMed  CAS  Google Scholar 

  6. Menon V, White H, LeJemtel T, Webb JG, Sleeper LA, Hochman JS (2000) The clinical profile of patients with suspected cardiogenic shock due to predominant left ventricular failure: a report from the SHOCK Trial Registry. SHould we emergently revascularize Occluded Coronaries in cardiogenic shocK? J Am Coll Cardiol 36 (Suppl A):1071–6

    Google Scholar 

  7. Hollenberg SM (2001) Cardiogenic shock. Crit Care Clin 17:391–410

    Article  PubMed  CAS  Google Scholar 

  8. Hollenberg SM, Kavinsky CJ, Parrillo JE (1999) Cardiogenic shock. Ann Intern Med 131:47–59

    PubMed  CAS  Google Scholar 

  9. Califf R, Bengtson J (1994) Cardiogenic shock. N Engl J Med 330:1724–1730

    Article  PubMed  CAS  Google Scholar 

  10. Hochman JS, Sleeper LA, Webb JG, et al (1999) Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med 341:625–634

    Article  PubMed  CAS  Google Scholar 

  11. Lindholm MG, Kober L, Boesgaard S, Torp-Pedersen C, Aldershvile J (2003) Cardiogenic shock complicating acute myocardial infarction; prognostic impact of early and late shock development. Eur Heart J 24:258–265

    Article  PubMed  CAS  Google Scholar 

  12. Hochman JS, Buller CE, Sleeper LA, et al (2000) Cardiogenic shock complicating acute myocardial infarction–etiologies, management and outcome: a report from the SHOCK Trial Registry. SHould we emergently revascularize Occluded Coronaries for cardiogenic shocK? J Am Coll Cardiol 36:1063–1070

    Article  PubMed  CAS  Google Scholar 

  13. Hochman JS, Sleeper LA, White HD, et al (2001) One-year survival following early revascularization for cardiogenic shock. Jama 285:190–192

    Article  PubMed  CAS  Google Scholar 

  14. Hochman JS, Sleeper LA, Webb JG, et al (2006) Early Revascularization and Long-term Survival in Cardiogenic Shock Complicating Acute Myocardial Infarction. Jama 295:2511–2515

    Article  PubMed  Google Scholar 

  15. Webb JG, Lowe AM, Sanborn TA, et al (2003) Percutaneous coronary intervention for cardiogenic shock in the SHOCK trial. J Am Coll Cardiol 42:1380–1386

    Article  PubMed  Google Scholar 

  16. Zeymer U, Vogt A, Zahn R, et al (2004) Predictors of in-hospital mortality in 1333 patients with acute myocardial infarction complicated by cardiogenic shock treated with primary percutaneous coronary intervention (PCI); Results of the primary PCI registry of the Arbeitsgemeinschaft Leitende Kardiologische Krankenhausarzte (ALKK). Eur Heart J 25:322–328

    Article  PubMed  Google Scholar 

  17. White HD, Assmann SF, Sanborn TA, et al (2005) Comparison of percutaneous coronary intervention and coronary artery bypass grafting after acute myocardial infarction complicated by cardiogenic shock: results from the Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock (SHOCK) trial. Circulation 112:1992–2001

    Article  PubMed  Google Scholar 

  18. Patrono C (1994) Aspirin as an antiplatelet drug. N Engl J Med 330:1287–1294

    Article  PubMed  CAS  Google Scholar 

  19. Roux S, Christeller S, Ludin E (1992) Effects of aspirin on coronary reocclusion and recurrent ischemia after thrombolysis: a meta-analysis. J Am Coll Cardiol 19:671–677

    Article  PubMed  CAS  Google Scholar 

  20. Quinn MJ, Fitzgerald DJ (1999) Ticlopidine and clopidogrel. Circulation 100:1667–1672

    PubMed  CAS  Google Scholar 

  21. The Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial I. Effects of Clopidogrel in Addition to Aspirin in Patients with Acute Coronary Syndromes without ST-Segment Elevation. N Engl J Med (2001) 345:494–502

  22. Steinhubl SR, Berger PB, Mann JT, 3rd, et al (2002) Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. Jama 288:2411–2420

    Article  PubMed  CAS  Google Scholar 

  23. Sabatine MS, Cannon CP, Gibson CM, et al (2005) Addition of Clopidogrel to Aspirin and Fibrinolytic Therapy for Myocardial Infarction with ST-Segment Elevation. N Engl J Med 352:1179–1189

    Article  PubMed  CAS  Google Scholar 

  24. Chen ZM, Pan HC, Chen YP, et al (2005) Early intravenous then oral metoprolol in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet 366:1622–1632

    Article  PubMed  CAS  Google Scholar 

  25. Antoniucci D, Rodriguez A, Hempel A, et al (2003) A randomized trial comparing primary infarct artery stenting with or without abciximab in acute myocardial infarction. J Am Coll Cardiol 42:1879–1885

    Article  PubMed  CAS  Google Scholar 

  26. Montalescot G, Barragan P, Wittenberg O, et al (2001) Platelet Glycoprotein IIb/IIIa Inhibition with Coronary Stenting for Acute Myocardial Infarction. N Engl J Med 344:1895–1903

    Article  PubMed  CAS  Google Scholar 

  27. Neumann FJ, Blasini R, Schmitt C, et al (1998) Effect of glycoprotein IIb/IIIa receptor blockade on recovery of coronary flow and left ventricular function after the placement of coronary-artery stents in acute myocardial infarction. Circulation 98:2695–2701

    PubMed  CAS  Google Scholar 

  28. Stone GW, Grines CL, Cox DA, et al (2002) Comparison of Angioplasty with Stenting, with or without Abciximab, in Acute Myocardial Infarction. N Engl J Med 346:957–966

    Article  PubMed  CAS  Google Scholar 

  29. Antoniucci D, Valenti R, Migliorini A, et al (2002) Abciximab therapy improves survival in patients with acute myocardial infarction complicated by early cardiogenic shock undergoing coronary artery stent implantation. Am J Cardiol 90:353–357

    Article  PubMed  CAS  Google Scholar 

  30. Chan AW, Chew DP, Bhatt DL, Moliterno DJ, Topol EJ, Ellis SG (2002) Long-term mortality benefit with the combination of stents and abciximab for cardiogenic shock complicating acute myocardial infarction. Am J Cardiol 89:132–136

    Article  PubMed  CAS  Google Scholar 

  31. Giri S, Mitchel J, Azar RR, et al (2002) Results of primary percutaneous transluminal coronary angioplasty plus abciximab with or without stenting for acute myocardial infarction complicated by cardiogenic shock. Am J Cardiol 89:126–131

    Article  PubMed  CAS  Google Scholar 

  32. Reid P, Gu X, Jamal H (2003) Abciximab treatment for acute myocardial infarction: mortality in patients with cardiogenic shock. Eur Heart J 25 (Suppl):Abstract 255

  33. Zeymer U, Tebbe U, Weber M, et al (2003) Prospective evaluation of early abciximab and primary percutaneous intervention for patients with ST elevation myocardial infarction complicated by cardiogenic shock: results of the REO-SHOCK trial. J Invasive Cardiol 15:385–389

    PubMed  Google Scholar 

  34. Hasdai D, Harrington RA, Hochman JS, et al (2000) Platelet glycoprotein IIb/IIIa blockade and outcome of cardiogenic shock complicating acute coronary syndromes without persistent ST-segment elevation. J Am Coll Cardiol 36:685–692

    Article  PubMed  CAS  Google Scholar 

  35. Narins CR, Hillegass WB, Jr., Nelson CL, et al (1996) Relation Between Activated Clotting Time During Angioplasty and Abrupt Closure. Circulation 93:667–671

    PubMed  CAS  Google Scholar 

  36. Neuhaus K-L, Molhoek GP, Zeymer U, et al (1999) Recombinant hirudin (lepirudin) for the improvement of thrombolysis with streptokinase in patients with acute myocardial infarction : Results of the HIT-4 trial. J Am Coll Cardiol 34:966–973

    Article  PubMed  CAS  Google Scholar 

  37. The Global Use of Strategies to Open Occluded Coronary Arteries II. A Comparison of Recombinant Hirudin with Heparin for the Treatment of Acute Coronary Syndromes. N Engl J Med (1996) 335:775–782

  38. The Hirulog and Early Reperfusion or Occlusion -2 Trial. Thrombin-specific anticoagulation with bivalirudin versus heparin in patients receiving fibrinolytic therapy for acute myocardial infarction: the HERO-2 randomised trial. The Lancet (2001) 358:1855–1863

    Google Scholar 

  39. Coussement PK, Bassand JP, Convens C, et al (2001) A synthetic factor-Xa inhibitor (ORG31540/SR9017A) as an adjunct to fibrinolysis in acute myocardial infarction. The PENTALYSE study. Eur Heart J 22:1716–1724

    Article  PubMed  CAS  Google Scholar 

  40. Boden WE (2002) Is it time to reassess the optimal timing of coronary artery bypass graft surgery following acute myocardial infarction? Am J Cardiol 90:35–38

    Article  PubMed  Google Scholar 

  41. Hochman JS, Sleeper LA, Godfrey E, et al (1999) SHould we emergently revascularize Occluded Coronaries for cardiogenic shocK: an international randomized trial of emergency PTCA/CABG-trial design. The SHOCK Trial Study Group. Am Heart J 137:313–321

    Article  PubMed  CAS  Google Scholar 

  42. Williams SG, Wright DJ, Tan LB (2000) Management of cardiogenic shock complicating acute myocardial infarction: towards evidence based medical practice. Heart 83:621–626

    Article  PubMed  CAS  Google Scholar 

  43. Hochman JS (2003) Cardiogenic shock complicating acute myocardial infarction: expanding the paradigm. Circulation 107:2998–3002

    Article  PubMed  Google Scholar 

  44. The Task Force on the Management of Acute Myocardial Infarction of the European Society of Cardiology, Van de Werf F, Ardissino D, et al. Management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J (2003) 24:28–66

    Google Scholar 

  45. Antman EM, Anbe DT, Armstrong PW, et al (2004) ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction). J Am Coll Cardiol 44:E1–E212

    Article  PubMed  Google Scholar 

  46. Stone GW, Ohman EM, Miller MF, et al (2003) Contemporary utilization and outcomes of intra-aortic balloon counterpulsation in acute myocardial infarction: The benchmark registry. J Am Coll Cardiol 41:1940–1945

    Article  PubMed  Google Scholar 

  47. Prondzinsky R, Lemm H, Swyter M, et al (2006) A Prospective, Randomized Evaluation of Intraaortic Balloon Counterpulsation for the Prevention of Multiorgan-Dysfunction and -Failure in Patients with Acute Myocardial Infarction complicated by Cardiogenic Shock. Circulation Supplement 114:II–555 (2668)

    Google Scholar 

  48. Cohen M, Urban P, Christenson JT, et al (2003) Intra-aortic balloon counterpulsation in US and non-US centres: results of the Benchmark(R) Registry. Eur Heart J 24:1763–1770

    Article  PubMed  Google Scholar 

  49. Anderson RD, Ohman EM, Holmes DR, Jr., et al (1997) Use of intraaortic balloon counterpulsation in patients presenting with cardiogenic shock: observations from the GUSTO-I Study. Global Utilization of Streptokinase and TPA for Occluded Coronary Arteries. J Am Coll Cardiol 30:708–715

    Article  PubMed  CAS  Google Scholar 

  50. Chen EW, Canto JG, Parsons LS, et al (2003) Relation between hospital intra-aortic balloon counterpulsation volume and mortality in acute myocardial infarction complicated by cardiogenic shock. Circulation 108:951–957

    Article  PubMed  Google Scholar 

  51. Barron HV, Every NR, Parsons LS, et al (2001) The use of intra-aortic balloon counterpulsation in patients with cardiogenic shock complicating acute myocardial infarction: Data from the National Registry of Myocardial Infarction 2. Am Heart J 141:933–939

    Article  PubMed  CAS  Google Scholar 

  52. Hausmann H, Potapov EV, Koster A, et al (2002) Prognosis After the Implantation of an Intra-Aortic Balloon Pump in Cardiac Surgery Calculated With a New Score. Circulation 106:203I–2036

    Article  Google Scholar 

  53. Doll N, Kiaii B, Borger M, et al (2004) Five-Year results of 219 consecutive patients treated with extracorporeal membrane oxygenation for refractory postoperative cardiogenic shock. The Ann Thorac Surg 77:151–157

    Article  Google Scholar 

  54. Sibbald WJ, Keenan SP (1997) Show me the evidence: a critical appraisal of the Pulmonary Artery Catheter Consensus Conference and other musings on how critical care practitioners need to improve the way we conduct business. Crit Care Med 25:2060–2063

    Google Scholar 

  55. Mueller HS, Chatterjee K, Davis KB, et al (1998) ACC expert consensus document. Present use of bedside right heart catheterization in patients with cardiac disease. American College of Cardiology. J Am Coll Cardiol 32:840–864

    Article  PubMed  CAS  Google Scholar 

  56. Binanay C, Califf RM, Hasselblad V, et al (2005) Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. Jama 294:1625–1633

    Article  PubMed  Google Scholar 

  57. Müller-Werdan U, Buerke M, Christoph A, et al (2006) Septische Kardiomyopathie. Intensivmed 43:486–497

    Google Scholar 

  58. Friese RS, Shafi S, Gentilello LM (2006) Pulmonary artery catheter use is associated with reduced mortality in severely injured patients: a National Trauma Data Bank analysis of 53,312 patients. Crit Care Med 34:1597–1601

    Article  PubMed  Google Scholar 

  59. Gödje O, Thiel C, Lamm P, et al (1999) Less invasive, continuous hemodynamic monitoring during minimally invasive coronary surgery. Ann Thorac Surg 68:1540–1541

    Article  Google Scholar 

  60. Cotter G, Moshkovitz Y, Kaluski E, et al (2003) The role of cardiac power and systemic vascular resistance in the pathophysiology and diagnosis of patients with acute congestive heart failure. Eur J Heart Fail 5:443–451

    Article  PubMed  Google Scholar 

  61. Fincke R, Hochman JS, Lowe AM, et al (2004) Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: A report from the SHOCK trial registry. J Am Coll Cardiol 44:340–348

    Google Scholar 

  62. Mendoza DD, Cooper HA, Panza JA (2007) Cardiac power output predicts mortality across a broad spectrum of patients with acute cardiac disease. Am Heart J 153:366–370

    Article  PubMed  Google Scholar 

  63. De Luca L, Colucci WS, Nieminen MS, Massie BM, Gheorghiade M (2006) Evidence-based use of levosimendan in different clinical settings. Eur Heart J 27:1908–1920

    Article  PubMed  CAS  Google Scholar 

  64. Innes CA, Wagstaff AJ (2003) Levosimendan: a review of its use in the management of acute decompensated heart failure. Drugs 63:2651–2671

    Article  PubMed  CAS  Google Scholar 

  65. Rokyta Jr R, Pechman V (2006) The effects of Levosimendan on global haemodynamics in patients with cardiogenic shock. Neuro Endocrinol Lett 27:121–127

    PubMed  CAS  Google Scholar 

  66. Delle Karth G, Buberl A, Geppert A, et al (2003) Hemodynamic effects of a continuous infusion of levosimendan in critically ill patients with cardiogenic shock requiring catecholamines. Acta Anaesthesiol Scand 47:1251–1256

    Article  Google Scholar 

  67. Garcia-Gonzalez MJ, Dominguez-Rodriguez A, Ferrer-Hita JJ, Abreu-Gonzalez P, Munoz MB (2006) Cardiogenic shock after primary percutaneous coronary intervention: Effects of levosimendan compared with dobutamine on haemodynamics. Eur J Heart Fail 8:723–728

    Article  PubMed  CAS  Google Scholar 

  68. Christoph A, Prondzinsky R, Russ M, et al (2008) Early and sustained haemodynamic improvement with levosimendan compared to intraaortic balloon counterpulsation (IABP) in cardiogenic shock complicating acute myocardial infarction. Acute Card Care 10:49–57

    Article  PubMed  Google Scholar 

  69. Russ MA, Prondzinsky R, Christoph A, et al (2007) Hemodynamic improvement following levosimendan treatment in patients with acute myocardial infarction and cardiogenic shock. Crit Care Med 35:2732–2739

    Article  PubMed  CAS  Google Scholar 

  70. Fuhrmann JT, Schmeisser A, Schulze MR, et al (2008) Levosimendan is superior to enoximone in refractory cardiogenic shock complicating acute myocardial infarction. Crit Care Med 36:2257–2266

    Article  PubMed  CAS  Google Scholar 

  71. Jolly S, Newton G, Horlick E, et al (2005) Effect of vasopressin on hemodynamics in patients with refractory cardiogenic shock complicating acute myocardial infarction. Am J Cardiol 96:1617–1620

    Article  PubMed  CAS  Google Scholar 

  72. Geppert A, Dorninger A, Delle-Karth G, Zorn G, Heinz G, Huber K (2006) Plasma concentrations of interleukin-6, organ failure, vasopressor support, and successful coronary revascularization in predicting 30-day mortality of patients with cardiogenic shock complicating acute myocardial infarction. Crit Care Med 34:2035–2042

    Article  PubMed  CAS  Google Scholar 

  73. Cotter G, Berger PB (2006) Cardiogenic shock--Beyond the large infarction. Crit Care Med 34:2234–2235

    Article  PubMed  Google Scholar 

  74. Kohsaka S, Menon V, Lowe AM, et al (2005) Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch Intern Med 165:1643–1650

    Article  PubMed  Google Scholar 

  75. Cotter G, Kaluski E, Milo O, et al (2003) LINCS: L-NAME (a NO synthase inhibitor) in the treatment of refractory cardiogenic shock: a prospective randomized study. Eur Heart J 24:1287–1295

    Article  PubMed  CAS  Google Scholar 

  76. The Triumph-Investigators. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. Jama (2007) 297:1657–66

    Google Scholar 

  77. Schiffl H, Lang SM, Fischer R (2002) Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346:305–310

    Article  PubMed  Google Scholar 

  78. Angstwurm M, Gärtner R (2005) Endokrine Störungen und Spurenelementdefizienzen.. In: Sepsis und MODS (Hrsg: Werdan K, Schuster H-P, Müller-Werdan U), Springer Medizin Verlag Heidelberg, 4. Auflage:473–483

    Chapter  Google Scholar 

  79. Reinhart K, Brunkhorst FM, Bone HG, et al (2006) Diagnose und Therapie der Sepsis : S2-Leitlinien der Deutschen Sepsis-Gesellschaft e.V. (DSG) und der Deutschen Interdisziplinaren Vereinigung fur Intensiv- und Notfallmedizin (DIVI). Internist (Berl) 47:356–373

    Article  PubMed  CAS  Google Scholar 

  80. Kilger E, Weis F, Briegel J, et al (2003) Stress doses of hydrocortisone reduce severe systemic inflammatory response syndrome and improve early outcome in a risk group of patients after cardiac surgery. Crit Care Med 31:1068–1074

    Article  PubMed  CAS  Google Scholar 

  81. Devos P, Chiolero R, Van den Berghe G, Preiser JC (2006) Glucose, insulin and myocardial ischaemia. Curr Opin Clin Nutr Metab Care 9:131–139

    Article  PubMed  CAS  Google Scholar 

  82. Van den Berghe G (2004) How does blood glucose control with insulin save lives in intensive care? J Clin Invest 114:1187–1195

    PubMed  Google Scholar 

  83. van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  84. Van den Berghe G, Wilmer A, Hermans G, et al (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354:449–461

    Article  PubMed  Google Scholar 

  85. Brunkhorst FM, Werdan K (2006) Intensivmedizin - Nach den positiven Studien kommen die Fragen. Dtsch Med Wochenschr 131:1441–1444

    Article  PubMed  CAS  Google Scholar 

  86. Schmidt H, Muller-Werdan U, Hoffmann T, et al (2005) Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med 33:1994–2002

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Buerke.

Additional information

Serie

Neues aus Kardiologie und Rhythmologie

Implikationen für die Intensiv- und Notfallmedizin

Herausgegeben von H.-J. Trappe [Herne]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buerke, M., Russ, M., Prondzinsky, R. et al. Infarktbedingter kardiogener Schock – Diagnose, Monitoring und Therapie. Intensivmed 46, 132–145 (2009). https://doi.org/10.1007/s00390-009-0037-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00390-009-0037-0

Schlüsselwörter

Keywords

Navigation