Skip to main content

Advertisement

Log in

Macrophages promote tumour growth and liver metastasis in an orthotopic syngeneic mouse model of colon cancer

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

Tumour-associated macrophages have been shown to promote proliferation, angiogenesis and metastasis in several carcinomas. The effect on colon cancer has not yet been clarified. Furthermore, Kupffer cells in the liver might initiate the formation of metastases by directly binding tumour cells.

Methods

An orthotopic syngeneic mouse model of colon cancer as well as a liver metastases model has been studied, using murine CT-26 colon cancer cells in Balb/c-mice. Macrophages were depleted in both models by clodronate liposomes. Tumour sizes and metastases were determined using 7-Tesla MRI. The macrophage and vascular density in the orthotopic tumours as well as the Kupffer cell density in the livers were evaluated using immunohistochemistry.

Results

Animals in the macrophage-depleted group displayed significantly smaller primary tumours (37 ± 20 mm3) compared to the control group (683 ± 389 mm3, p = 0.0072). None of the mice in the depleted group showed liver or peritoneal metastases, whereas four of six control mice displayed liver and five out of six mice peritoneal metastases. The vascular density was significantly lower in the macrophage-depleted group (p = 0.0043). In the liver metastases model, animals of the Kupffer cell-depleted group (14.3 ± 7.7) showed significantly less liver metastases than mice of the two control groups (PBS liposomes, 118.5 ± 28.2, p = 0.0117; NaCl, 81.7 ± 23.2, p = 0.0266). The number of liver metastases correlated directly with the Kupffer cell density (p = 0.0221).

Conclusion

Macrophages promote tumour growth, angiogenesis and metastases in this orthotopic syngeneic mouse model. Kupffer cells enhance the formation of metastases in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  2. Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW (2005) Colorectal cancer. Lancet 365(9454):153–165

    Article  PubMed  Google Scholar 

  3. Cirocchi R, Trastulli S, Boselli C, Montedori A, Cavaliere D, Parisi A, Noya G, Abraha I (2012) Radiofrequency ablation in the treatment of liver metastases from colorectal cancer. Cochrane Database Syst Rev 6, CD006317

    PubMed  Google Scholar 

  4. Renehan AG, Egger M, Saunders MP, O'Dwyer ST (2002) Impact on survival of intensive follow up after curative resection for colorectal cancer: systematic review and meta-analysis of randomised trials. BMJ 324(7341):813

    Article  PubMed  Google Scholar 

  5. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-associated macrophages. Immunol Today 13(7):265–270

    Article  PubMed  CAS  Google Scholar 

  6. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    Article  PubMed  CAS  Google Scholar 

  7. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  PubMed  CAS  Google Scholar 

  8. Goerdt S, Orfanos CE (1999) Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10(2):137–142

    Article  PubMed  CAS  Google Scholar 

  9. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66(1):1–9

    Article  PubMed  Google Scholar 

  10. Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G, Meerschaut S, Beschin A, Raes G, De Baetselier P (2006) Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology 211(6–8):487–501

    Article  PubMed  Google Scholar 

  11. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  PubMed  CAS  Google Scholar 

  12. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727

    Article  PubMed  CAS  Google Scholar 

  13. Mantovani A (1994) Tumor-associated macrophages in neoplastic progression: a paradigm for the in vivo function of chemokines. Lab Investig 71:5–16

    PubMed  CAS  Google Scholar 

  14. Graves DT, Jiang YL, Williamson MJ, Valente AJ (1989) Identification of monocyte chemotactic activity produced by malignant cells. Science 245(4925):1490–1493

    Article  PubMed  CAS  Google Scholar 

  15. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

    Article  PubMed  CAS  Google Scholar 

  16. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196(3):254–265

    Article  PubMed  CAS  Google Scholar 

  17. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629

    PubMed  CAS  Google Scholar 

  18. Lee AH, Happerfield LC, Bobrow LG, Millis RR (1997) Angiogenesis and inflammation in invasive carcinoma of the breast. J Clin Pathol 50(8):669–673

    Article  PubMed  CAS  Google Scholar 

  19. Salvesen HB, Akslen LA (1999) Significance of tumour-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas. Int J Cancer 84(5):538–543

    Article  PubMed  CAS  Google Scholar 

  20. Hanada T, Nakagawa M, Emoto A, Nomura T, Nasu N, Nomura Y (2000) Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol 7(7):263–269

    Article  PubMed  CAS  Google Scholar 

  21. Lissbrant IF, Stattin P, Wikstrom P, Damber JE, Egevad L, Bergh A (2000) Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol 17(3):445–451

    PubMed  CAS  Google Scholar 

  22. Ohno S, Inagawa H, Dhar DK, Fujii T, Ueda S, Tachibana M, Suzuki N, Inoue M, Soma G, Nagasue N (2003) The degree of macrophage infiltration into the cancer cell nest is a significant predictor of survival in gastric cancer patients. Anticancer Res 23(6D):5015–5022

    PubMed  Google Scholar 

  23. Ma J, Liu L, Che G, Yu N, Dai F, You Z (2010) The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10:112

    Article  PubMed  Google Scholar 

  24. Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R (2007) High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 13(5):1472–1479

    Article  PubMed  CAS  Google Scholar 

  25. Zhou Q, Peng RQ, Wu XJ, Xia Q, Hou JH, Ding Y, Zhou QM, Zhang X, Pang ZZ, Wan DS, Zeng YX, Zhang XS (2010) The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. J Transl Med 8:13

    Article  PubMed  Google Scholar 

  26. Bacman D, Merkel S, Croner R, Papadopoulos T, Brueckl W, Dimmler A (2007) TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study. BMC Cancer 7:156

    Article  PubMed  Google Scholar 

  27. Bailey C, Negus R, Morris A, Ziprin P, Goldin R, Allavena P, Peck D, Darzi A (2007) Chemokine expression is associated with the accumulation of tumour associated macrophages (TAMs) and progression in human colorectal cancer. Clin Exp Metastasis 24(2):121–130

    Article  PubMed  CAS  Google Scholar 

  28. Barbera-Guillem E, Nyhus JK, Wolford CC, Friece CR, Sampsel JW (2002) Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Res 62(23):7042–7049

    PubMed  CAS  Google Scholar 

  29. Braet F, Nagatsuma K, Saito M, Soon L, Wisse E, Matsuura T (2007) The hepatic sinusoidal endothelial lining and colorectal liver metastases. World J Gastroenterol 13(6):821–825

    PubMed  Google Scholar 

  30. Paschos KA, Majeed AW, Bird NC (2010) Role of Kupffer cells in the outgrowth of colorectal cancer liver metastases. Hepatol Res 40(1):83–94

    Article  PubMed  CAS  Google Scholar 

  31. Bayon LG, Izquierdo MA, Sirovich I, van Rooijen N, Beelen RH, Meijer S (1996) Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver. Hepatology 23(5):1224–1231

    Article  PubMed  CAS  Google Scholar 

  32. Heuff G, Oldenburg HS, Boutkan H, Visser JJ, Beelen RH, Van Rooijen N, Dijkstra CD, Meyer S (1993) Enhanced tumour growth in the rat liver after selective elimination of Kupffer cells. Cancer Immunol Immunother 37(2):125–130

    Article  PubMed  CAS  Google Scholar 

  33. Timmers M, Vekemans K, Vermijlen D, Asosingh K, Kuppen P, Bouwens L, Wisse E, Braet F (2004) Interactions between rat colon carcinoma cells and Kupffer cells during the onset of hepatic metastasis. Int J Cancer 112(5):793–802

    Article  PubMed  CAS  Google Scholar 

  34. Gangopadhyay A, Lazure DA, Thomas P (1998) Adhesion of colorectal carcinoma cells to the endothelium is mediated by cytokines from CEA stimulated Kupffer cells. Clin Exp Metastasis 16(8):703–712

    Article  PubMed  CAS  Google Scholar 

  35. Aarons CB, Bajenova O, Andrews C, Heydrick S, Bushell KN, Reed KL, Thomas P, Becker JM, Stucchi AF (2007) Carcinoembryonic antigen-stimulated THP-1 macrophages activate endothelial cells and increase cell–cell adhesion of colorectal cancer cells. Clin Exp Metastasis 24(3):201–209

    Article  PubMed  Google Scholar 

  36. Kruskal JB, Azouz A, Korideck H, El-Hallak M, Robson SC, Thomas P, Goldberg SN (2007) Hepatic colorectal cancer metastases: imaging initial steps of formation in mice. Radiology 243(3):703–711

    Article  PubMed  Google Scholar 

  37. Corbett TH, Griswold DP Jr, Roberts BJ, Peckham JC, Schabel FM Jr (1975) Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure. Cancer Res 35(9):2434–2439

    PubMed  CAS  Google Scholar 

  38. Van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174(1–2):83–93

    Article  PubMed  Google Scholar 

  39. van Rooijen N, Hendrikx E (2010) Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol Biol 605:189–203

    Article  PubMed  Google Scholar 

  40. Partecke IL, Kaeding A, Sendler M, Albers N, Kuhn JP, Speerforck S, Roese S, Seubert F, Diedrich S, Kuehn S, Weiss UF, Mayerle J, Lerch MM, Hadlich S, Hosten N, Heidecke CD, Puls R, von Bernstorff W (2011) In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model. BMC Cancer 11:40

    Article  PubMed  Google Scholar 

  41. Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R, Stanley ER, Abraham D (2004) Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res 64(15):5378–5384

    Article  PubMed  CAS  Google Scholar 

  42. Tsutsui S, Yasuda K, Suzuki K, Tahara K, Higashi H, Era S (2005) Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep 14(2):425–431

    PubMed  CAS  Google Scholar 

  43. Lewis CE, Leek R, Harris A, McGee JO (1995) Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. J Leukoc Biol 57(5):747–751

    PubMed  CAS  Google Scholar 

  44. Oosterling SJ, van der Bij GJ, Meijer GA, Tuk CW, van Garderen E, van Rooijen N, Meijer S, van der Sijp JR, Beelen RH, van Egmond M (2005) Macrophages direct tumour histology and clinical outcome in a colon cancer model. J Pathol 207(2):147–155

    Article  PubMed  Google Scholar 

  45. Gjoen T, Seljelid R, Kolset SO (1989) Binding of metastatic colon carcinoma cells to liver macrophages. J Leukoc Biol 45(4):362–369

    PubMed  CAS  Google Scholar 

  46. Khatib AM, Fallavollita L, Wancewicz EV, Monia BP, Brodt P (2002) Inhibition of hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides blocks colorectal carcinoma liver metastasis. Cancer Res 62(19):5393–5398

    PubMed  CAS  Google Scholar 

  47. Kan Z, Ivancev K, Lunderquist A, McCuskey PA, McCuskey RS, Wallace S (1995) In vivo microscopy of hepatic metastases: dynamic observation of tumor cell invasion and interaction with Kupffer cells. Hepatology 21(2):487–494

    Article  PubMed  CAS  Google Scholar 

  48. Griffini P, Smorenburg SM, Verbeek FJ, van Noorden CJ (1997) Three-dimensional reconstruction of colon carcinoma metastases in liver. J Microsc 187(Pt 1):12–21

    Article  PubMed  CAS  Google Scholar 

  49. Luo Y, Zhou H, Krueger J, Kaplan C, Lee SH, Dolman C, Markowitz D, Wu W, Liu C, Reisfeld RA, Xiang R (2006) Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116(8):2132–2141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the German Federal Ministry of Education and Research BMBF, grant no. 0314107.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Partecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruse, J., von Bernstorff, W., Evert, K. et al. Macrophages promote tumour growth and liver metastasis in an orthotopic syngeneic mouse model of colon cancer. Int J Colorectal Dis 28, 1337–1349 (2013). https://doi.org/10.1007/s00384-013-1703-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-013-1703-z

Keywords

Navigation