Skip to main content
Log in

SLIT2 inhibits cell migration in colorectal cancer through the AKT–GSK3β signaling pathway

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

Colorectal cancer is a common malignancy and one of the major causes of cancer-related deaths worldwide. Similar to other human cancers, tumor metastasis is the biggest obstacle in the clinical treatment of colorectal cancer. In this study, we explored the functional role of SLIT2 in colon tumor metastasis and the relevant molecular mechanisms.

Methods

Immunohistochemistry, Western blotting, and quantitative reverse transcription-polymerase chain reaction were used to measure SLIT2 expression in colorectal tumor tissues in the presence or absence of metastasis. Wound-healing assays, Transwell assays, Western blotting, and immunofluorescence assays were used to examine the effects of SLIT2 on SW480 and NCM460 cell migration and the epithelial-to-mesenchymal transition (EMT). An AKT inhibitor was introduced to examine the mechanism underlying SLIT2-mediated suppression of NCM460 cell migration.

Results

Higher SLIT2 expression was detected in metastasis-positive tumor tissues, and this upregulation was beneficial for the overall survival of patients with colorectal cancer. Either the addition of purified SLIT2 or overexpression of SLIT2 inhibited SW480 cell migration, whereas the depletion of SLIT2 with shRNA enhanced the migratory ability of NCM460 cells. Meanwhile, SLIT2 depletion also induced β-catenin accumulation and altered the expression levels of several molecules related to EMT in NCM460 cells. AKT inhibition abrogated the effects of SLIT2 depletion on EMT and migration in NCM460 cells.

Conclusions

SLIT2 suppresses colon tumor metastasis, and it exerts its suppressive activity against colorectal cancer metastasis by restraining AKT signaling and EMT, thus making it a potential clinical prognosis marker in colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460

    Article  PubMed  CAS  Google Scholar 

  2. Wang WS, Chen PM, Su Y (2009) Colorectal carcinoma: from tumorigenesis to treatment. Cell Mol Life Sci 63(6):663–671

    Article  Google Scholar 

  3. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96

    Article  PubMed  Google Scholar 

  4. Fearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol 6:479–507

    Article  PubMed  CAS  Google Scholar 

  5. Georgas K, Burridge L, Smith K, Holmes GP, Chenevix-Trench G, Ioannou PA, Little MH (1999) Assignment of the human slit homologue SLIT2 to human chromosome band 4p15.2. Cytogenet Cell Genet 86(3–4):246–247

    Article  PubMed  CAS  Google Scholar 

  6. Nguyen-Ba-Charvet KT, Chedotal A (2002) Role of Slit proteins in the vertebrate brain. J Physiol Paris 96(1–2):91–98

    Article  PubMed  CAS  Google Scholar 

  7. Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, Tang H, Wen L, Brady-Kalnay SM, Mei L, Wu JY, Xiong WC, Rao Y (2001) Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 107(2):209–221

    Article  PubMed  CAS  Google Scholar 

  8. Liao WX, Wing DA, Geng JG, Chen DB (2010) Perspectives of SLIT/ROBO signaling in placental angiogenesis. Histol Histopathol 25(9):1181–1190

    PubMed  CAS  Google Scholar 

  9. Liu D, Hou J, Hu X, Wang X, Xiao Y, Mou Y, De Leon H (2006) Neuronal chemorepellent Slit2 inhibits vascular smooth muscle cell migration by suppressing small GTPase Rac1 activation. Circ Res 98(4):480–489

    Article  PubMed  CAS  Google Scholar 

  10. Jin J, You H, Yu B, Deng Y, Tang N, Yao G, Shu H, Yang S, Qin W (2009) Epigenetic inactivation of SLIT2 in human hepatocellular carcinomas. Biochem Biophys Res Commun 379(1):86–91

    Article  PubMed  CAS  Google Scholar 

  11. Tseng RC, Lee SH, Hsu HS, Chen BH, Tsai WC, Tzao C, Wang YC (2010) SLIT2 attenuation during lung cancer progression deregulates beta-catenin and E-cadherin and associates with poor prognosis. Cancer Res 70(2):543–551

    Article  PubMed  CAS  Google Scholar 

  12. Narayan G, Goparaju C, Arias-Pulido H, Kaufmann AM, Schneider A, Dürst M, Mansukhani M, Pothuri B, Murty VV (2006) Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression. Mol Cancer 5:16

    Article  PubMed  Google Scholar 

  13. Xu Y, Li WL, Fu L, Gu F, Ma YJ (2010) Slit2/Robo1 signaling in glioma migration and invasion. Neurosci Bull 26(6):474–478

    Article  PubMed  Google Scholar 

  14. Dunwell TL, Dickinson RE, Stankovic T, Dallol A, Weston V, Austen B, Catchpoole D, Maher ER, Latif F (2009) Frequent epigenetic inactivation of the SLIT2 gene in chronic and acute lymphocytic leukemia. Epigenetics 4(4):265–269

    PubMed  CAS  Google Scholar 

  15. Kim HK, Zhang H, Li H, Wu TT, Swisher S, He D, Wu L, Xu J, Elmets CA, Athar M, Xu XC, Xu H (2008) Slit2 inhibits growth and metastasis of fibrosarcoma and squamous cell carcinoma. Neoplasia 10(12):1411–1420

    PubMed  CAS  Google Scholar 

  16. Prasad A, Paruchuri V, Preet A, Latif F, Ganju RK (2008) Slit-2 induces a tumor-suppressive effect by regulating beta-catenin in breast cancer cells. J Biol Chem 283(39):26624–26633

    Article  PubMed  CAS  Google Scholar 

  17. Astuti D, Da Silva NF, Dallol A, Gentle D, Martinsson T, Kogner P, Grundy R, Kishida T, Yao M, Latif F, Maher ER (2004) SLIT2 promoter methylation analysis in neuroblastoma, Wilms' tumour and renal cell carcinoma. Br J Cancer 90(2):515–521

    Article  PubMed  CAS  Google Scholar 

  18. Dallol A, Da Silva NF, Viacava P, Minna JD, Bieche I, Maher ER, Latif F (2002) SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res 62(20):5874–5880

    PubMed  CAS  Google Scholar 

  19. Dallol A, Krex D, Hesson L, Eng C, Maher ER, Latif F (2003) Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene 22(29):4611–4616

    Article  PubMed  CAS  Google Scholar 

  20. Dallol A, Morton D, Maher ER, Latif F (2003) SLIT2 axon guidance molecule is frequently inactivated in colorectal cancer and suppresses growth of colorectal carcinoma cells. Cancer Res 63(5):1054–1058

    PubMed  CAS  Google Scholar 

  21. Zhou WJ, Geng ZH, Chi S, Zhang W, Niu XF, Lan SJ, Ma L, Yang X, Wang LJ, Ding YQ, Geng JG (2011) Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Res 21(4):609–626

    Article  PubMed  CAS  Google Scholar 

  22. Chen RH, Ding WV, McCormick F (2000) Wnt signaling to beta-catenin involves two interactive components. Glycogen synthase kinase-3beta inhibition and activation of protein kinase C. J Biol Chem 275(23):17894–17899

    Article  PubMed  CAS  Google Scholar 

  23. Schmalhofer O, Brabletz S, Brabletz T (2009) E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 28(1–2):151–166

    Article  PubMed  CAS  Google Scholar 

  24. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J, Fearon ER, Weiss SJ (2006) A Wnt–Axin2–GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 8(12):1398–1406

    Article  PubMed  CAS  Google Scholar 

  25. Qiao M, Sheng S, Pardee AB (2008) Metastasis and AKT activation. Cell Cycle 7(19):2991–2996

    Article  PubMed  CAS  Google Scholar 

  26. Katoh M, Katoh M (2006) Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther 5(9):1059–1064

    Article  PubMed  CAS  Google Scholar 

  27. Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ (2005) Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 280(12):11740–11748

    Article  PubMed  CAS  Google Scholar 

  28. Kaidanovich O, Eldar-Finkelman H (2002) The role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Expert Opin Ther Targets 6(5):555–561

    Article  PubMed  CAS  Google Scholar 

  29. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6(10):931–940

    Article  PubMed  CAS  Google Scholar 

  30. Moreno-Bueno G, Portillo F, Cano A (2008) Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27(55):6958–6969

    Article  PubMed  CAS  Google Scholar 

  31. Becker KF, Rosivatz E, Blechschmidt K, Kremmer E, Sarbia M, Höfler H (2007) Analysis of the E-cadherin repressor Snail in primary human cancers. Cells Tissues Organs 185(1–3):204–212

    Article  PubMed  CAS  Google Scholar 

  32. Unni D (2010) Role of Slit and Robo in the development of midline glia and corpus callosum. PhD Thesis, Queensland Brain Institute, The University of Queensland

  33. Dai CF, Jiang YZ, Li Y, Wang K, Liu PS, Patankar MS, Zheng J (2011) Expression and roles of Slit/Robo in human ovarian cancer. Histochem Cell Biol 135(5):475–485

    Article  PubMed  CAS  Google Scholar 

  34. Dickinson RE, Dallol A, Bieche I, Krex D, Morton D, Maher ER, Latif F (2004) Epigenetic inactivation of SLIT3 and SLIT1 genes in human cancers. Br J Cancer 91(12):2071–2078

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Medical Leading Project of Shanghai Municipal Science and Technology Committee (10411969600 and 11411950502), Major Project of Shanghai Municipal Science and Technology Committee (09DZ1950102 and 11DZ2280400), and Key Project of Shanghai Municipal Science and Technology Committee (09JC1403300). No other financial relationships relevant to this publication existed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qing Yao.

Additional information

Wei-Feng Chen, Wei-Dong Gao, and Quan-Lin Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WF., Gao, WD., Li, QL. et al. SLIT2 inhibits cell migration in colorectal cancer through the AKT–GSK3β signaling pathway. Int J Colorectal Dis 28, 933–940 (2013). https://doi.org/10.1007/s00384-013-1641-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-013-1641-9

Keywords

Navigation