Skip to main content

Advertisement

Log in

Elevated expressions of MMP7, TROP2, and survivin are associated with survival, disease recurrence, and liver metastasis of colon cancer

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

Colorectal cancer is one of the most common cancers worldwide. We tested the hypothesis that differences in the expression of certain molecular markers of colon cancer may account for different clinical outcomes.

Methods

Tissue microarray technology was used to assay the expression of 17 biological markers [β-catenin, CD44v7, c-myc, cyclin D1, estrogen receptor β, mitogen-activated protein kinase/extracellular signal-regulated kinase, maspin, matrix metalloproteinase-7 (MMP7), p53, Pin1, peroxisome proliferators-activated receptor-gamma, survivin, T cell transcription factor 4 (TCF4), transforming growth factor beta receptor II (TGFβR II), TGFβ, TROP2, and Wnt] by immunohistochemistry in 620 colon cancer patients. The Cox proportional hazards regression model was applied to analyze the lifetime data, including time to death, time to recurrence, and time to liver metastasis.

Results

All the markers were present at significantly higher expression levels in tumor specimens than in normal colonic specimens. Kaplan–Meier analysis showed that high expression of TROP2, MMP7, and survivin were related to decreased survival; TCF4 and TROP2 were related to disease recurrence; and CD44v7, cyclin D1, MMP7, p53, survivin, and TCF4 were related to liver metastasis. However, the results of the multivariate analysis only showed that expression of MMP7, survivin, and TROP2 were significant predictors of lower patient survival, while TROP2 and MMP7 were significantly related to disease recurrence and liver metastasis, respectively.

Conclusions

We conclude that elevated survivin, MMP7, and TROP2 expression levels are related to decreased survival. In addition, elevated MMP7 and TROP2 expression levels are predictors of disease recurrence and liver metastasis, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW (2005) Colorectal cancer. Lancet 365:153–165

    Article  PubMed  Google Scholar 

  2. Graziano F, Cascinu S (2003) Prognostic molecular markers for planning adjuvant chemotherapy trials in Dukes' B colorectal cancer patients: how much evidence is enough? Ann Oncol 14:1026–1038

    Article  PubMed  CAS  Google Scholar 

  3. McLeod HL, Murray GI (1999) Tumour markers of prognosis in colorectal cancer. Br J Cancer 79:191–203

    Article  PubMed  CAS  Google Scholar 

  4. Leichman CG (2001) Predictive and prognostic markers in gastrointestinal cancers. Curr Opin Oncol 13:291–299

    Article  PubMed  CAS  Google Scholar 

  5. Eschrich S, Yang I, Bloom G, Kwong KY, Boulware D, Cantor A et al (2005) Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol 23:3526–3535

    Article  PubMed  CAS  Google Scholar 

  6. Kuramochi J, Arai T, Ikeda S, Kumagai J, Uetake H, Sugihara K (2006) High Pin1 expression is associated with tumor progression in colorectal cancer. J Surg Oncol 94:155–160

    Article  PubMed  CAS  Google Scholar 

  7. Kirimlioglu H, Kirimlioglu V, Yilmaz S, Sagir V, Coban S, Turkmen E et al (2006) Role of matrix metalloproteinase-7 in colorectal adenomas. Dig Dis Sci 51:2068–2072

    Article  PubMed  CAS  Google Scholar 

  8. Ponnelle T, Chapusot C, Martin L, Bouvier AM, Plenchette S, Faivre J et al (2005) Cellular localisation of survivin: impact on the prognosis in colorectal cancer. J Cancer Res Clin Oncol 131:504–510

    Article  PubMed  CAS  Google Scholar 

  9. Ohmachi T, Tanaka F, Mimori K, Inoue H, Yanaga K, Mori M (2006) Clinical significance of TROP2 expression in colorectal cancer. Clin Cancer Res 12:3057–3063

    Article  PubMed  CAS  Google Scholar 

  10. Horvath L, Henshall S (2001) The application of tissue microarrays to cancer research. Pathology 33:125–129

    Article  PubMed  CAS  Google Scholar 

  11. Oving IM, Clevers HC (2002) Molecular causes of colon cancer. Eur J Clin Invest 32:448–457

    Article  PubMed  CAS  Google Scholar 

  12. Iczkowski KA, Omara-Opyene AL, Kulkarni TR, Pansara M, Shah GV (2005) Paracrine calcitonin in prostate cancer is linked to CD44 variant expression and invasion. Anticancer Res 25:2075–2083

    PubMed  CAS  Google Scholar 

  13. Chang AJ, Song DH, Wolfe MM (2006) Attenuation of peroxisome proliferator-activated receptor gamma (PPARgamma) mediates gastrin-stimulated colorectal cancer cell proliferation. J Biol Chem 281:14700–14710

    Article  PubMed  CAS  Google Scholar 

  14. Ishikawa T, Ichikawa Y, Mitsuhashi M, Momiyama N, Chishima T, Tanaka K et al (1996) Matrilysin is associated with progression of colorectal tumor. Cancer Lett 107:5–10

    Article  PubMed  CAS  Google Scholar 

  15. Hipfner DR, Cohen SM (2004) Connecting proliferation and apoptosis in development and disease. Nat Rev Mol Cell Biol 5:805–815

    Article  PubMed  CAS  Google Scholar 

  16. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG (2004) Minireview: cyclin D1: normal and abnormal functions. Endocrinology 145:5439–5447

    Article  PubMed  CAS  Google Scholar 

  17. Fornaro M, Dell'Arciprete R, Stella M, Bucci C, Nutini M, Capri MG et al (1995) Cloning of the gene encoding Trop-2, a cell-surface glycoprotein expressed by human carcinomas. Int J Cancer 62:610–618

    Article  PubMed  CAS  Google Scholar 

  18. Umekita Y, Souda M, Yoshida H (2006) Expression of maspin in colorectal cancer. In Vivo 20:797–800

    PubMed  CAS  Google Scholar 

  19. Boltze C (2005) Loss of maspin is a helpful prognosticator in colorectal cancer: a tissue microarray analysis. Pathol Res Pract 200:783–790

    Article  PubMed  CAS  Google Scholar 

  20. Massague J, Blain SW, Lo RS (2000) TGFb signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  PubMed  CAS  Google Scholar 

  21. Akhurst RJ (2004) TGF beta signaling in health and disease. Nat Genet 36:790–792

    Article  PubMed  CAS  Google Scholar 

  22. Campbell-Thompson M, Lynch IJ, Bhardwaj B (2001) Expression of estrogen receptor (ER) subtypes and ERbeta isoforms in colon cancer. Cancer Res 61:632–640

    PubMed  CAS  Google Scholar 

  23. Konstantinopoulos PA, Kominea A, Vandoros G, Sykiotis GP, Andricopoulos P, Varakis I et al (2003) Oestrogen receptor β (ERbeta) is abundantly expressed in normal colonic mucosa, but declines in colon denocarcinoma paralleling the tumour’s dedifferentiation. Eur J Cancer 39:1251–1258

    Article  PubMed  CAS  Google Scholar 

  24. Mills A (2005) P53: links to the past, bridge to the future. Genes Dev 19:2091–2099

    Article  PubMed  CAS  Google Scholar 

  25. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  26. Thompson N, Lyons J (2005) Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr Opin Pharmacol 5:350–356

    Article  PubMed  CAS  Google Scholar 

  27. Greene FL, Page DL, Fleming ID et al (2002) AJCC: cancer staging handbook: from the AJCC cancer staging manual, 6th edn. Springer, New York

    Google Scholar 

  28. Sobin LH, Wittekind C (eds) (2002) UICC: TNM classification of malignant tumours. Wiley, London

  29. Schraml P, Kononen J, Bubendorf L, Moch H, Bissig H, Nocito A et al (1999) Tissue microarrays for gene amplification surveys in many different tumor types. Clin Cancer Res 5:1966–1975

    PubMed  CAS  Google Scholar 

  30. Mucci NR, Akdas G, Manely S, Rubin MA (2000) Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum Pathol 31:406–414

    Article  PubMed  CAS  Google Scholar 

  31. Richter J, Wagner U, Kononen J, Fijan A, Bruderer J, Schmid U et al (2000) High-throughput tissue microarray analysis of cyclin E gene amplification and overexpression in urinary bladder cancer. Am J Pathol 157:787–794

    PubMed  CAS  Google Scholar 

  32. Benson AB 3rd, Schrag D, Somerfield MR, Cohen AM, Figueredo AT, Flynn PJ et al (2004) American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol 22:3408–3419

    Article  PubMed  Google Scholar 

  33. Johnson PM, Porter GA, Ricciardi R, Baxter NN (2006) Increasing negative lymph node count is independently associated with improved long-term survival in stage IIIB and IIIC colon cancer. J Clin Oncol 24:3570–3575

    Article  PubMed  Google Scholar 

  34. Nakashima K, Shimada H, Ochiai T, Kuboshima M, Kuroiwa N, Okazumi S et al (2004) Serological identification of TROP2 by recombinant cDNA expression cloning using sera of patients with esophageal squamous cell carcinoma. Int J Cancer 112:1029–1035

    Article  PubMed  CAS  Google Scholar 

  35. Kanai Y, Ushijima S, Saito Y, Nakanishi Y, Sakamoto M, Hirohashi S (2001) MRNA expression of genes altered by 5-azacytidine treatment in cancer cell lines is associated with clinicopathological parameters of human cancers. J Cancer Res Clin Oncol 127:697–706

    PubMed  CAS  Google Scholar 

  36. Alberti S, Miotti S, Stella M, Klein CE, Fornaro M, Menard S et al (1992) Biochemical characterization of Trop-2, a cell surface molecule expressed by human carcinomas: formal proof that the monoclonal antibodies T16 and MOv-16 recognize Trop-2. Hybridoma 11:539–545

    Article  PubMed  CAS  Google Scholar 

  37. Miotti S, Canevari S, Menard S, Mezzanzanica D, Porro G, Pupa SM et al (1987) Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. Int J Cancer 39:297–303

    Article  PubMed  CAS  Google Scholar 

  38. Fradet Y, Cordon-Cardo C, Thomson T, Daly ME, Whitmore WF Jr, Lloyd KO et al (1984) Cell surface antigens of human bladder cancer defined by mouse monoclonal antibodies. Proc Natl Acad Sci U S A 81:224–228

    Article  PubMed  CAS  Google Scholar 

  39. Lipinski M, Parks DR, Rouse RV, Herzenberg LA (1981) Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proc Natl Acad Sci U S A 78:5147–5150

    Article  PubMed  CAS  Google Scholar 

  40. White PS, Forus A, Matise TC, Schutte BC, Spieker N, Stanier P et al (1999) Report of the fifth international workshop on human chromosome 1 mapping 1999. Cytogenet Cell Genet 87:143–171

    Article  PubMed  CAS  Google Scholar 

  41. El Sewedy T, Fornaro M, Alberti S (1998) Cloning of the murine TROP2 gene: conservation of a PIP2-binding sequence in the cytoplasmic domain of TROP-2. Int J Cancer 75:324–330

    Article  PubMed  Google Scholar 

  42. Suzuki A, Hayashida M, Ito T, Kawasaki H, Nakano T, Miura M et al (2000) Survivin initiates cell cycle entry by the competitive interaction with Cdk4/p16(INK4a) and Cdk2/cyclin E complex activation. Oncogene 19:3225–3234

    Article  PubMed  CAS  Google Scholar 

  43. Sarela AI, Macadam RC, Farmery SM, Markham AF, Guillou PJ (2000) Expression of the antiapoptosis gene, survivin, predicts death from recurrent colorectal carcinoma. Gut 46:645–650

    Article  PubMed  CAS  Google Scholar 

  44. Rodel F, Hoffmann J, Grabenbauer GG, Papadopoulos T, Weiss C, Gunther K et al (2002) High survivin expression is associated with reduced apoptosis in rectal cancer and may predict disease-free survival after preoperative radiochemotherapy and surgical resection. Strahlenther Onkol 178:426–435

    Article  PubMed  Google Scholar 

  45. Rodel F, Hoffmann J, Distel L, Herrmann M, Noisternig T, Papadopoulos T et al (2005) Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res 65:4881–4887

    Article  PubMed  Google Scholar 

  46. Ryan BM, Konecny GE, Kahlert S, Wang HJ, Untch M, Meng G et al (2006) Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1. Ann Oncol 17:597–604

    Article  PubMed  CAS  Google Scholar 

  47. Kato J, Kuwabara Y, Mitani M, Shinoda N, Sato A, Toyama T et al (2001) Expression of survivin in esophageal cancer: correlation with the prognosis and response to chemotherapy. Int J Cancer 95:92–95

    Article  PubMed  CAS  Google Scholar 

  48. Takai N, Miyazaki T, Nishida M, Nasu K, Miyakawa I (2002) Survivin expression correlates with clinical stage, histological grade, invasive behavior and survival rate in endometrial carcinoma. Cancer Lett 184:105–116

    Article  PubMed  CAS  Google Scholar 

  49. Altieri DC (2003) Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3:46–54

    Article  PubMed  CAS  Google Scholar 

  50. Li F (2003) Survivin study: what is the next wave? J Cell Physiol 197:8–29

    Article  PubMed  CAS  Google Scholar 

  51. Yang D, Welm A, Bishop JM (2004) Cell survival in the absence of survivin. Proc Natl Acad Sci U S A 101:15100–15105

    Article  PubMed  CAS  Google Scholar 

  52. Okada H, Mak TW (2004) Pathways of apoptotic and nonapoptotic death in tumour cells. Nat. Rev. Cancer 4:592–603

    Article  PubMed  CAS  Google Scholar 

  53. Kawasaki H, Toyoda M, Shinohara H, Okuda J, Watanabe I, Yamamoto T et al (2001) Expression of survivin correlates with apoptosis, proliferation and angiogenesis during human colorectal carcinogenesis. Cancer 91:2026–2032

    Article  PubMed  CAS  Google Scholar 

  54. Blanc-Brude OP, Mesri M, Wall NR, Plescia J, Dohi T, Altieri DC (2003) Therapeutic targeting of the survivin pathway in cancer: initiation of mitochondrial apoptosis and suppression of tumor-associated angiogenesis. Cancer Res 9:2683–2692

    CAS  Google Scholar 

  55. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    Article  PubMed  CAS  Google Scholar 

  56. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  57. Vihinen P, Kahari VM (2002) Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 99:157–166

    Article  PubMed  CAS  Google Scholar 

  58. Gu ZD, Li JY, Li M, Gu J, Shi XT, Ke Y et al (2005) Matrix metalloproteinases expression correlates with survival in patients with esophageal squamous cell carcinoma. Am J Gastroenterol 100:1835–1843

    Article  PubMed  CAS  Google Scholar 

  59. Yamamoto H, Itoh F, Adachi Y, Fukushima H, Itoh H, Sasaki S et al (1999) Messenger RNA expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human hepatocellular carcinoma. Jpn J Clin Oncol 29:58–62

    Article  PubMed  CAS  Google Scholar 

  60. Yamashita K, Azumano I, Mai M, Okada Y (1998) Expression and tissue localization of matrix metalloproteinase 7 (matrilysin) in human gastric carcinomas. Implications for vessel invasion and metastasis. Int J Cancer 79:187–194

    Article  PubMed  CAS  Google Scholar 

  61. Leeman MF, Curran S, Murray GI (2003) New insights into the roles of matrix metalloproteinases in colorectal cancer development and progression. J Pathol 201:528–534

    Article  PubMed  CAS  Google Scholar 

  62. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P et al (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18:2883–2891

    Article  PubMed  CAS  Google Scholar 

  63. Zeng ZS, Shu WP, Cohen AM, Guillem JG (2002) Matrix metalloproteinase-7 expression in colorectal cancer liver metastases: evidence for involvement of MMP-7 activation in human cancer metastases. Clin Cancer Res 8:144–148

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by Grant No. 2004B3030102 from the Guangdong Science & Technology Planning Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Wan.

Additional information

Y. J. Fang and Z. H. Lu contributed equally to this article as first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Y.J., Lu, Z.H., Wang, G.Q. et al. Elevated expressions of MMP7, TROP2, and survivin are associated with survival, disease recurrence, and liver metastasis of colon cancer. Int J Colorectal Dis 24, 875–884 (2009). https://doi.org/10.1007/s00384-009-0725-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-009-0725-z

Keywords

Navigation