Skip to main content
Log in

BAX and caspase-5 frameshift mutations and spontaneous apoptosis in colorectal cancer with microsatellite instability

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Background and aims

Hereditary nonpolyposis colorectal cancer (HNPCC) and a subset of sporadic colorectal cancers are characterized by microsatellite instability (MSI) and inactivating frameshift mutations of target genes. Inactivation of BAX, caspase-5 (cas-5), and other genes coding for pro-apoptotic proteins might contribute to tumor progression by enhancing escape from apoptosis. The aim of this study was to further characterize the role of BAX and cas-5 inactivation for spontaneous apoptosis.

Methods

Twenty-five colorectal cancers with MSI were analyzed for frameshift mutations in the BAX (G)8 and cas-5 (A)10 tract by fluorescence PCR, cloning, and sequencing. The rate of spontaneous apoptosis was examined by in situ DNA nick end-labeling. The results were compared with 25 stage-matched microsatellite stable (MSS) colorectal cancers.

Results

In colorectal cancer with MSI frameshift mutations in BAX and cas-5 were present in 16 of 25 (64%) and in 12 of 25 (48%) tumors, respectively, whereas neither mutant BAX nor cas-5 alleles were detected in all stage-matched sporadic MSS colorectal cancer. Tumors with MSI showed a higher apoptotic rate than MSS tumors (2.5±1.0 vs. 2.1±0.7; p <0.05), whereas the presence of BAX or cas-5 frameshift mutations had only minor influence on this finding (2.4±1.1% and 2.5±0.9%, respectively).

Conclusion

Mismatch-repair deficiency itself is associated with increased spontaneous apoptosis, not further accelerated by either inactivating BAX or cas-5 frameshift mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a, b
Fig. 3

Similar content being viewed by others

References

  1. Chung DC, Rustgi AK (2003) The hereditary nonpolyposis colorectal cancer syndrome: genetics and clinical implications. Ann Intern Med 138:560–570

    CAS  PubMed  Google Scholar 

  2. Lynch HT, de La Chapelle A (1999) Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet 36:801–818

    CAS  PubMed  Google Scholar 

  3. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561

    CAS  PubMed  Google Scholar 

  4. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819

    PubMed  Google Scholar 

  5. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 95:6870–6875

    CAS  PubMed  Google Scholar 

  6. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, Brattain M, Willson J (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    CAS  PubMed  Google Scholar 

  7. Parsons R, Myeroff LL, Liu B, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B (1995) Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res 55:5548–5550

    CAS  PubMed  Google Scholar 

  8. Souza RF, Appel R, Yin J, Wang S, Smolinski KN, Abraham JM, Zou TT, Shi YQ, Lei J, Cottrell J, Cymes K, Biden K, Simms L, Leggett B, Lynch PM, Frazier M, Powell SM, Harpaz N, Sugimura H, Young J, Meltzer SJ (1996) Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet 14:255–257

    CAS  PubMed  Google Scholar 

  9. Malkhosyan S, Rampino N, Yamamoto H, Perucho M (1996) Frameshift mutator mutations. Nature 382:499–500

    CAS  PubMed  Google Scholar 

  10. Yamamoto H, Sawai H, Perucho M (1997) Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 57:4420–4426

    CAS  PubMed  Google Scholar 

  11. Yin J, Kong D, Wang S, Zou TT, Souza RF, Smolinski KN, Lynch PM, Hamilton SR, Sugimura H, Powell SM, Young J, Abraham JM, Meltzer SJ (1997) Mutation of hMSH3 and hMSH6 mismatch repair genes in genetically unstable human colorectal and gastric carcinomas. Hum Mutat 10:474–478

    Article  CAS  PubMed  Google Scholar 

  12. Duval A, Gayet J, Zhou XP, Iacopetta B, Thomas G, Hamelin R (1999) Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res 59:4213–4215

    CAS  PubMed  Google Scholar 

  13. Riccio A, Aaltonen LA, Godwin AK, Loukola A, Percesepe A, Salovaara R, Masciullo V, Genuardi M, Paravatou-Petsotas M, Bassi DE, Ruggeri BA, Klein-Szanto AJ, Testa JR, Neri G, Bellacosa A (1999) The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nat Genet 23:266–268

    CAS  PubMed  Google Scholar 

  14. Bader S, Walker M, Hendrich B, Bird A, Bird C, Hooper M, Wyllie A (1999) Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency. Oncogene 18:8044–8047

    Article  CAS  PubMed  Google Scholar 

  15. Bertoni F, Codegoni AM, Furlan D, Tibile MG, Capella C, Broggini M (1999) CHK1 frameshift mutations in genetically unstable colorectal and endometrial cancers. Genes Chromosomes Cancer 26:176–180

    Article  CAS  PubMed  Google Scholar 

  16. Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, Halling KC, Cunningham JM, Qian C, Christensen E, Roche PC, Smith DI, Thibodeau SN (2000) Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signaling. Nat Genet 26:146–147

    Article  CAS  PubMed  Google Scholar 

  17. Piao Z, Fang W, Malkhosyan S, Kim H, Horii A, Perucho M, Huang S (2000) Frequent frameshift mutations of RIZ in sporadic gastrointestinal and endometrial carcinomas with microsatellite instability. Cancer Res 60:4701–4704

    CAS  PubMed  Google Scholar 

  18. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275:967–969

    CAS  PubMed  Google Scholar 

  19. Schwartz S Jr, Yamamoto H, Navarro M, Maestro M, Reventos J, Perucho M (1999) Frameshift mutations at mononucleotide repeats in Caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 59:2995–3002

    CAS  PubMed  Google Scholar 

  20. Yamamoto H, Gil J, Schwartz S Jr, Perucho M (2000) Frameshift mutations in Fas, Apaf-1, and Bcl-10 in gastro-intestinal cancer of the microsatellite mutator phenotype. Cell Death Differ 7:238–239

    Article  CAS  PubMed  Google Scholar 

  21. Ionov Y, Yamamoto H, Krajewski S, Reed JC, Perucho M (2000) Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumors clonal evolution. Proc Natl Acad Sci USA 97:10872–10877

    Article  CAS  PubMed  Google Scholar 

  22. Raedle J, Trojan J, Brieger A, Weber N, Schäfer D, Plotz G, Staib-Sebler E, Kriener S, Lorenz M, Zeuzem S (2001) Bethesda guidelines: relation to microsatellite instability and MLH1 promoter methylation in patients with colorectal cancer. Ann Intern Med 135:566–576

    CAS  PubMed  Google Scholar 

  23. Vasen HF, Watson P, Mecklin JP, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116:1453–1456

    CAS  PubMed  Google Scholar 

  24. Raedle J, Brieger A, Trojan J, Hardt T, Herrmann G, Zeuzem S (1999) Evaluation of rapid microsatellite analysis of paraffin-embedded specimens in screening for hereditary nonpolyposis colorectal cancer. Mod Pathol 12:485–491

    CAS  PubMed  Google Scholar 

  25. Trojan J, Brieger A, Raedle J, Esteller M, Zeuzem S (2000) 5’-CpG island methylation of the LKB1/STK11 promoter and allelic loss at chromosome 19p13.3 in sporadic colorectal cancer. Gut 47:272–276

    CAS  PubMed  Google Scholar 

  26. Yagi OK, Akiyama Y, Nomizu T, Iwama T, Endo M, Yuasa Y (1998) Proapoptotic gene BAX is frequently mutated in hereditary nonpolyposis colorectal cancers but not in adenomas. Gastroenterology 114:268–274

    CAS  PubMed  Google Scholar 

  27. Yamamoto H, Sawai H, Weber TK, Rodriguez-Bigas MA, Perucho M (1998) Somatic frameshift mutations in DNA mismatch repair and proapoptosis genes in hereditary nonpolyposis colorectal cancer. Cancer Res 58:997–1003

    CAS  PubMed  Google Scholar 

  28. Percesepe A, Kristo P, Aaltonen LA, Ponz de Leon M, de la Chapelle A, Peltomaki P (1998) Mismatch repair genes and mononucleotide tracts as mutation targets in colorectal tumours with different degrees of microsatellite instability. Oncogene 17:157–63

    Article  CAS  PubMed  Google Scholar 

  29. Fujiwara T, Stolker JM, Watanabe T, Rashid A, Longo P, Eshleman JR, Booker S, Lynch HT, Jass JR, Green JS, Kim H, Jen J, Vogelstein B, Hamilton SR (1998) Accumulated clonal genetic alterations in familial and sporadic colorectal carcinomas with widespread instability in microsatellite sequences. Am J Pathol 153:1063–1078

    CAS  PubMed  Google Scholar 

  30. Samowitz WS, Slattery ML (1999) Regional reproducibility of microsatellite instability in sporadic colorectal cancer. Genes Chromosomes Cancer 26:106–114

    Article  CAS  PubMed  Google Scholar 

  31. Abdel-Rahman WM, Georgiades IB, Curtis LJ, Arends MJ, Wyllie AH (1999) Role of BAX mutations in mismatch repair-deficient colorectal carcinogenesis. Oncogene 18:2139–142

    Article  CAS  PubMed  Google Scholar 

  32. Barnetson R, Jass J, Tse R, Eckstein R, Robinson B, Schnitzler M (2000) Mutations associated with microsatellite unstable colorectal carcinomas exhibit widespread intratumousal heterogeneity. Genes Chromosomes Cancer 29:130–136

    Article  CAS  PubMed  Google Scholar 

  33. Iino H, Simms L, Young J, Arnold J, Winship IM, Webb SI, Furlong KL, Leggett B, Jass JR (2000) DNA microsatellite instability and mismatch repair protein loss in adenomas presenting in hereditary non-polyposis colorectal cancer. Gut 47:37–42

    Article  CAS  PubMed  Google Scholar 

  34. Akiyama Y, Iwanaga R, Saitoh K, Shiba K, Ushio K, Ikeda E, Iwama T, Nomizu T, Yuasa Y (1997) Transforming growth factor beta type II receptor gene mutations in adenomas from hereditary nonpolyposis colorectal cancer. Gastroenterology 112:33–39

    Google Scholar 

  35. Wang L, Cunningham JM, Winters JL, Guenther JC, French AJ, Boardman LA, Burgart LJ, McDonnell SK, Schaid DJ, Thibodeau SN (2003) BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res 63:5209–5212

    CAS  PubMed  Google Scholar 

  36. Chan TL, Zhao W, Leung SY, Yuen ST, Cancer Genome Project (2003) BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res 63:4878–4881

    CAS  PubMed  Google Scholar 

  37. Jass JR, Whitehall VL, Young J, Leggett BA (2002) Emerging concepts in colorectal neoplasia. Gastroenterology 123:862–876

    Google Scholar 

  38. Jass JR, Do KA, Simms LA, Iino H, Wynter C, Pillay SP, Searle J, Radford-Smith G, Young J, Leggett B (1998) Morphology of sporadic colorectal cancer with DNA replication errors. Gut 42:673–679

    CAS  PubMed  Google Scholar 

  39. Dolcetti R, Viel A, Doglioni C, Russo A, Guidoboni M, Capozzi E, Vecchiato N, Macri E, Fornasarig M, Boiocchi M (1999) High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol 154:1805–1813

    CAS  PubMed  Google Scholar 

  40. Miyashita T, Reed JC (1995) Tumours suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    CAS  PubMed  Google Scholar 

  41. Brady HJ, Salomons GS, Bobeldijk RC, Berns AJ (1996) T cells from baxalpha transgenic mice show accelerated apoptosis in response to stimuli but do not show restored DNA damage-induced cell death in the absence of p53 gene product. EMBO J 15:1221–1230

    CAS  PubMed  Google Scholar 

  42. Munday NA, Vaillancourt JP, Ali A, Casano FJ, Miller DK, Molineaux SM, Yamin TT, Yu VL, Nicholson DW (1995) Molecular cloning and pro-apoptotic activity of ICErelII and ICErelIII, members of the ICE/CED-3 family of cysteine proteases. J Biol Chem 270:15870–15876

    Article  CAS  PubMed  Google Scholar 

  43. Michael-Robinson JM, Biemer-Huttmann A, Purdie DM, Walsh MD, Simms LA, Biden KG, Young JP, Leggett BA, Jass JR, Radford-Smith GL (2001) Tumour infiltrating lymphocytes and apoptosis are independent features in colorectal cancer stratified according to microsatellite instability status. Gut 48:360–366

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Trojan.

Additional information

This work was supported by grants from the Johann Wolfgang Goethe University Frankfurt a.M. (F15/01) and the Paul and Ursula Klein Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trojan, J., Brieger, A., Raedle, J. et al. BAX and caspase-5 frameshift mutations and spontaneous apoptosis in colorectal cancer with microsatellite instability. Int J Colorectal Dis 19, 538–544 (2004). https://doi.org/10.1007/s00384-004-0597-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-004-0597-1

Keywords

Navigation