Skip to main content

Advertisement

Log in

Activation of NF-κB in intestinal epithelial cells by E. coli strains isolated from the colonic mucosa of IBD patients

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Background and aims

The involvement of bacteria in the pathogenesis of inflammatory bowel disease has been discussed for several years. In this study we evaluated the ability of E. coli isolates from inflamed and noninflamed colonic mucosa to activate NF-κB.

Materials and methods

Fifteen bacterial strains from inflamed and six from noninflamed colonic tissues from IBD patients. Their ability to induce NF-κB activation was examined in vitro by gel-shift assays. The activation of the TNF-α promoter was determined by reporter gene assays. Bacterial isolates were characterized by invasion assays, electron microscopy, and PCR.

Results

Four of 15 E. coli bacterial isolates from inflamed IBD tissues induced NF-κB activity in intestinal epithelial cells as determined by gel-shift assays. NF-κB activation was only seen with living bacteria but not with heat-inactivated cells. Isolates from noninflamed tissues and a wild-type E. coli control strain induced a weaker or no activation. Reporter gene assays with a construct comprising a luciferase gene driven by the TNF-α promoter revealed that isolates from Crohn’s disease patients induced a stronger activation of the TNF-α gene than isolates from ulcerative colitis patients. The isolated bacteria invaded HT-29 cells, although typical virulence genes for enteropathogenic, enterhemorrhagic, or enteroinvasive E. coli, i.e., eae, tir, EspA, Per (A-C), ipaC, were not detected in these cells. Bacterial invasion was additionally confirmed by electron microscopy examination.

Conclusion

Our results indicate that E. coli strains can be found in the mucosa of some IBD patients which are able to activate NF-κB similar to known pathogenic strains. The absence of several virulence genes in these cells suggests that they are members of the luminal flora which acquire as yet unidentified virulence determinants and are therefore involved in the pathophysiology of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Podolsky DK (1991) Inflammatory bowel disease (1). N Engl J Med 325:928

    Google Scholar 

  2. Shanahan F, O’SullivanGC, Collins JK (1998) Genes, bacteria, and T cells: ingredients for inflammatory bowel disease. Gastroenterology 115:1595

    CAS  PubMed  Google Scholar 

  3. Merger M, Croitoru K (1998) Infections in the immunopathogenesis of chronic inflammatory bowel disease. Semin Immunol 10:69

    Article  CAS  PubMed  Google Scholar 

  4. Ibbotson JP, Lowes JR, Chahal H, Gaston JS, Life P, Kumararatne DS, Sharif H, Alexander-Williams J, Allan RN (1992) Mucosal cell-mediated immunity to mycobacterial, enterobacterial and other microbial antigens in inflammatory bowel disease. Clin Exp Immunol 87:224

    CAS  PubMed  Google Scholar 

  5. Giaffer MH, Holdsworth CD, Duerden BI (1991) The assessment of faecal flora in patients with inflammatory bowel disease by a simplified bacteriological technique. J Med Microbiol 35:238

    CAS  PubMed  Google Scholar 

  6. Kenny B, Finlay BB (1995) Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithelial cells. Proc Natl Acad Sci U S A 92:7991

    CAS  PubMed  Google Scholar 

  7. Tiveljung A, Soderholm JD, Olaison G, Jonasson J, Monstein HJ (1999) Presence of eubacteria in biopsies from Crohn’s disease inflammatory lesions as determined by 16S rRNA gene-based PCR. J Med Microbiol 48:263

    CAS  PubMed  Google Scholar 

  8. Hartley MG, Hudson MJ, Swarbrick ET, Gent AE, Hellier MD, Grace RH (1993) Adhesive and hydrophobic properties of Escherichia coli from the rectal mucosa of patients with ulcerative colitis. Gut 34:63

    CAS  PubMed  Google Scholar 

  9. Giaffer MH, Holdsworth CD, Duerden BI (1992) Virulence properties of Escherichia coli strains isolated from patients with inflammatory bowel disease. Gut 33:646

    CAS  PubMed  Google Scholar 

  10. Burke DA, Axon AT (1988) Adhesive Escherichia coli in inflammatory bowel disease and infective diarrhoea. BMJ 297:102

    CAS  PubMed  Google Scholar 

  11. Darfeuille-Michaud A, Neut C, Barnich N, Lederman E, Di Martino P, Desreumaux P, Gambiez L, Joly B, Cortot A, Colombel JF (1998) Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology 115:1405

    CAS  PubMed  Google Scholar 

  12. Boudeau J, Glasser AL, Masseret E, Joly B, Darfeuille-Michaud A (1999) Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn’s disease. Infect Immun 67:4499

    CAS  PubMed  Google Scholar 

  13. Thanos D, Maniatis T (1995) NF-kappa B: a lesson in family values. Cell 80:529

    CAS  PubMed  Google Scholar 

  14. Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, Knuechel R, Baeuerle PA, Scholmerich J, Gross V (1998) Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115:357

    CAS  PubMed  Google Scholar 

  15. Savkovic SD, Koutsouris A, Hecht G (1997) Activation of NF-kappaB in intestinal epithelial cells by enteropathogenic Escherichia coli. Am J Physiol 273:C1160

    CAS  PubMed  Google Scholar 

  16. Elewaut D, DiDonato JA, Kim JM, Truong F, Eckmann L, Kagnoff MF (1999) NF-kappa B is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. J Immunol 163:1457

    CAS  PubMed  Google Scholar 

  17. Beutin L, Gleier I, Kontny (1997) Origin and characteristics of enteroinvasive strains of Escherichia coli (EIEC) isolated in Germany. Epidemiol Infect 118:199

    Article  CAS  PubMed  Google Scholar 

  18. Savkovic SD, Koutsouris A, Hecht G (1996) Attachment of a noninvasive enteric pathogen, enteropathogenic Escherichia coli, to cultured human intestinal epithelial monolayers induces transmigration of neutrophils. Infect Immun 64:4480

    CAS  PubMed  Google Scholar 

  19. Andrews NC, Faller DV (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19:2499

    CAS  PubMed  Google Scholar 

  20. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475

    CAS  PubMed  Google Scholar 

  21. Schreiber E, Matthias P, Muller MM, Schaffner W (1989) Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res 17:6419

    CAS  PubMed  Google Scholar 

  22. Pierce JW, Lenardo M, Baltimore D (1988) Oligonucleotide that binds nuclear factor NF-kappa B acts as a lymphoid-specific and inducible enhancer element. Proc Natl Acad Sci U S A 85:1482

    CAS  PubMed  Google Scholar 

  23. Blanco JE, Blanco M, Blanco J, Mora A, Balaguer L, Mourino M, Juarez A, Jansen WH (1996) O serogroups, biotypes, and eae genes in Escherichia coli strains isolated from diarrheic and healthy rabbits. J Clin Microbiol 34:3101

    CAS  PubMed  Google Scholar 

  24. Dean-Nystrom EA, Bosworth BT, Moon HW, O’Brien AD (1998) Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves. Infect Immun 66:4560

    CAS  PubMed  Google Scholar 

  25. Donnenberg MS, Tacket CO, James SP, Losonsky G, Nataro JP, Wasserman SS, Kaper JB, Levine MM (1993) Role of the eaeA gene in experimental enteropathogenic Escherichia coli infection. J Clin Invest 92:1412

    CAS  PubMed  Google Scholar 

  26. Donnenberg MS, Tzipori S, McKee ML, O’Brien AD, Alroy J, Kaper JB (1993) The role of the eae gene of enterohemorrhagic Escherichia coli in intimate attachment in vitro and in a porcine model. J Clin Invest 92:1418

    CAS  PubMed  Google Scholar 

  27. Jerse AE, Martin WC, Galen JE, Kaper JB (1990) Oligonucleotide probe for detection of the enteropathogenic Escherichia coli (EPEC) adherence factor of localized adherent EPEC. J Clin Microbiol 28:2842

    CAS  PubMed  Google Scholar 

  28. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey AE, Finlay BB (1997) Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511

    CAS  PubMed  Google Scholar 

  29. Frankel G, Phillips AD, Rosenshine I, Dougan G, Kaper JB, Knutton S. (1998) Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol Microbiol 30:911

    Article  CAS  PubMed  Google Scholar 

  30. Okeke IN, Borneman JA, Shin S, Mellies JL, Quinn LE, Kaper JB (2001) Comparative sequence analysis of the plasmid-encoded regulator of enteropathogenic Escherichia coli strains. Infect Immun 69:5553

    Article  CAS  PubMed  Google Scholar 

  31. Oswald E, Schmidt H, Morabito S, Karch H, Marches O, Caprioli A (2000) Typing of intimin genes in human and animal enterohemorrhagic and enteropathogenic Escherichia coli: characterization of a new intimin variant. Infect Immun 68:64

    CAS  PubMed  Google Scholar 

  32. Allaoui A, Sansonetti PJ, Menard R, Barzu S, Mounier J, Phalipon A, Parsot C (1995) MxiG, a membrane protein required for secretion of Shigella spp. Ipa invasins: involvement in entry into epithelial cells and in intercellular dissemination. Mol Microbiol 17:461

    CAS  PubMed  Google Scholar 

  33. Geyid A, Fletcher J, Gashe BA, Ljungh A (1996) Invasion of tissue culture cells by diarrhoeagenic strains of Escherichia coli which lack the enteroinvasive inv gene. FEMS Immunol Med Microbiol 14:15

    Article  CAS  PubMed  Google Scholar 

  34. French N, Pettersson S (2000) Microbe-host interactions in the alimentary tract: the gateway to understanding inflammatory bowel disease. Gut 47:162

    Article  CAS  Google Scholar 

  35. Kagnoff MF, Eckmann L (1997) Epithelial cells as sensors for microbial infection. J Clin Invest 100:6

    CAS  PubMed  Google Scholar 

  36. Dyer RB, Collaco CR, Niesel DW, Herzog NK (1993) Shigella flexneri invasion of HeLa cells induces NF-kappa B DNA-binding activity. Infect Immun 61:4427

    CAS  PubMed  Google Scholar 

  37. Schultsz C, Van Den Berg FM, Ten Kate FW, Tytgat GN, Dankert J (1999) The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. Gastroenterology 117:1089

    CAS  PubMed  Google Scholar 

  38. Wulffen von H, Russmann H, Karch H, Meyer T, Bitzan M, Kohrt TC, Aleksic S (1989) Verocytotoxin-producing Escherichia coli O2:H5 isolated from patients with ulcerative colitis. Lancet I:1449

    Article  Google Scholar 

  39. Sinai AP, Bavoil PM (1993) Hyper-invasive mutants define a novel Pho-regulated invasion pathway in Escherichia coli. Mol Microbiol 10:1125

    CAS  PubMed  Google Scholar 

  40. Groisman EA, Ochman H (1993) Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J 12:3779

    CAS  PubMed  Google Scholar 

  41. Menard R, Sansonetti PJ, Parsot C (1993) Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol 175:5899

    PubMed  Google Scholar 

  42. Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S, Carrio, Merino J, Liu D, Ni J, Nunez G (1999) Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem 274:14560

    Article  CAS  PubMed  Google Scholar 

  43. Inohara N, Ogura Y, Chen FF, Muto A, Nunez G (2001) Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem 276:2551

    Article  CAS  PubMed  Google Scholar 

  44. Inohara N, Ogura Y, Nunez G (2002) Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr Opin Microbiol 5:76

    Article  CAS  PubMed  Google Scholar 

  45. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna JL, Nunez G (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn’s disease. J Biol Chem 4:4

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from a TMR project and by SFB415. We acknowledge the help of the nurses in the endoscopy department for their excellent work as well as Dr. Stephan Ott, Meike Barche, and Lorena Vailles for their skillful technical assistance. We also express many thanks to Marie-Luise Kruse who supported the preparation of the microscope samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Seegert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

La Ferla, K., Seegert, D. & Schreiber, S. Activation of NF-κB in intestinal epithelial cells by E. coli strains isolated from the colonic mucosa of IBD patients. Int J Colorectal Dis 19, 334–342 (2004). https://doi.org/10.1007/s00384-004-0583-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-004-0583-7

Keywords

Navigation