Skip to main content

Advertisement

Log in

Newborn screening for biliary atresia in the United States

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Despite advances in our understanding of the pathogenesis of biliary atresia (BA), BA remains the most common cause of end-stage liver disease in children and the leading indication for pediatric liver transplantation. Age at time of Kasai portoenterostomy (KPE), performed to provide bile drainage, strongly correlates with transplant-free survival, mostly due to progression of intrahepatic fibrosis to cirrhosis. Unfortunately, challenges remain in recognizing that a jaundiced infant may have BA. To better diagnose infants with BA at an earlier age, population-based screening programs in countries such as Taiwan, Japan, and China have utilized stool color cards. Early results have been promising demonstrating earlier diagnosis, earlier KPE, and, hence, improved outcomes. Cost-effectiveness studies focused on stool color card screening in North America where the incidence of BA is much lower also project improved transplant-free survival rate with a savings in terms of healthcare expenditure. There is also evidence that postnatal serum bilirubin levels may also be effective as a screening tool given that all infants with BA exhibit hyperbilirubinemia at birth. The American Academy of Pediatrics (AAP) recently advocated studying the implementation of newborn screening for BA in the United States. Further efforts and analyses within the United States are ongoing, but current evidence is supportive of screening for BA even in low incidence countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lakshminarayanan B, Davenport M (2016) Biliary atresia: a comprehensive review. J Autoimmun 73:1–9

    Article  PubMed  Google Scholar 

  2. Verkade HJ, Bezerra JA, Davenport M, Schreiber RA, Mieli-Vergani G, Hulscher JB et al (2016) Biliary atresia and other cholestatic childhood diseases: advances and future challenges. J Hepatol 65(3):631–42

    Article  PubMed  Google Scholar 

  3. Couturier L, Jarvis C, Rousseau H, Jimenez V (2015) Biliary atresia. Can Fam Physician 61(11):965–968

    PubMed  PubMed Central  Google Scholar 

  4. Feldman AG, Mack CL (2015) Biliary atresia: clinical lessons learned. J Pediatr Gastroenterol Nutr 61(2):167–175

    Article  PubMed  Google Scholar 

  5. Livesey E, Cortina Borja M, Sharif K, Alizai N, McClean P, Kelly D et al (2009) Epidemiology of biliary atresia in England and Wales (1999–2006). Arch Dis Child Fetal Neonatal Ed 94(6):F451–5

    Article  PubMed  Google Scholar 

  6. Tiao MM, Tsai SS, Kuo HW, Chen CL, Yang CY (2008) Epidemiological features of biliary atresia in Taiwan, a national study 1996–2003. J Gastroenterol Hepatol 23(1):62–66

    PubMed  Google Scholar 

  7. Zagory JA, Nguyen MV, Wang KS (2015) Recent advances in the pathogenesis and management of biliary atresia. Curr Opin Pediatr 27(3):389–394

    Article  PubMed  PubMed Central  Google Scholar 

  8. Petersen C, Kuske M, Bruns E, Biermanns D, Wussow PV, Mildenberger H (1998) Progress in developing animal models for biliary atresia. Eur J Pediatr Surg 8(3):137–141

    Article  CAS  PubMed  Google Scholar 

  9. Brindley SM, Lanham AM, Karrer FM, Tucker RM, Fontenot AP, Mack CL (2012) Cytomegalovirus-specific T-cell reactivity in biliary atresia at the time of diagnosis is associated with deficits in regulatory T cells. Hepatology 55(4):1130–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lorent K, Gong W, Koo KA, Waisbourd-Zinman O, Karjoo S, Zhao X et al (2015) Identification of a plant isoflavonoid that causes biliary atresia. Sci Transl Med 7(286):286ra67

    Article  PubMed  PubMed Central  Google Scholar 

  11. Muraji T (2014) Maternal microchimerism in biliary atresia: are maternal cells effector cells, targets, or just bystanders? Chimerism 5(1):1–5

    Article  PubMed  PubMed Central  Google Scholar 

  12. Leyva-Vega M, Gerfen J, Thiel BD, Jurkiewicz D, Rand EB, Pawlowska J et al (2010). Genomic alterations in biliary atresia suggest region of potential disease susceptibility in 2q37.3. Am J Med Genet A 152A(4):886–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cui S, Leyva-Vega M, Tsai EA, EauClaire SF, Glessner JT, Hakonarson H et al (2013) Evidence from human and zebrafish that GPC1 is a biliary atresia susceptibility gene. Gastroenterology 144(5):1107–1115 e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng G, Tang CS, Wong EH, Cheng WW, So MT, Miao X et al (2013) Common genetic variants regulating ADD3 gene expression alter biliary atresia risk. J Hepatol 59(6):1285–1291

    Article  CAS  PubMed  Google Scholar 

  15. Superina R, Magee JC, Brandt ML, Healey PJ, Tiao G, Ryckman F et al (2011) The anatomic pattern of biliary atresia identified at time of Kasai hepatoportoenterostomy and early postoperative clearance of jaundice are significant predictors of transplant-free survival. Ann Surg 254(4):577–585

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ohi R, Hanamatsu M, Mochizuki I, Chiba T, Kasai M (1985) Progress in the treatment of biliary atresia. World J Surg 9(2):285–293

    Article  CAS  PubMed  Google Scholar 

  17. Mavila N, James D, Shivakumar P, Nguyen MV, Utley S, Mak K et al (2014) Expansion of prominin-1-expressing cells in association with fibrosis of biliary atresia. Hepatology

  18. Nguyen MV, Zagory JA, Dietz WH, Park A, Fenlon M, Zhao M et al (2017) Hepatic Prominin-1 expression is associated with biliary fibrosis. Surgery

  19. Kamimoto K, Kaneko K, Kok CY, Okada H, Miyajima A, Itoh T (2016) Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling. Elife 5

  20. Maisels MJ, Bhutani VK, Bogen D, Newman TB, Stark AR, Watchko JF (2009) Hyperbilirubinemia in the newborn infant > or = 35 weeks’ gestation: an update with clarifications. Pediatrics 124(4):1193–1198

  21. Fawaz R, Baumann U, Ekong U, Fischler B, Hadzic N, Mack CL et al (2016) Guideline for the evaluation of cholestatic jaundice in infants: joint recommendations of the North American Society for pediatric gastroenterology, hepatology, and nutrition (NASPGHAN) and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN). J Pediatr Gastroenterol Nutr

  22. Ohi R (2000) Biliary atresia. A surgical perspective. Clin Liver Dis 4(4):779–804

    Article  CAS  PubMed  Google Scholar 

  23. Nio M, Wada M, Sasaki H, Tanaka H (2015) Effects of age at Kasai portoenterostomy on the surgical outcome: a review of the literature. Surg Today 45(7):813–818

    Article  PubMed  Google Scholar 

  24. Serinet MO, Wildhaber BE, Broue P, Lachaux A, Sarles J, Jacquemin E et al (2009) Impact of age at Kasai operation on its results in late childhood and adolescence: a rational basis for biliary atresia screening. Pediatrics 123(5):1280–1286

    Article  PubMed  Google Scholar 

  25. Lien TH, Chang MH, Wu JF, Chen HL, Lee HC, Chen AC et al (2011) Effects of the infant stool color card screening program on 5-year outcome of biliary atresia in Taiwan. Hepatology 53(1):202–208

    Article  PubMed  Google Scholar 

  26. Wang KS (2015) Newborn screening for biliary atresia. Pediatrics 136(6):e1663–9

    Article  PubMed  Google Scholar 

  27. Harpavat S, Ramraj R, Finegold MJ, Brandt ML, Hertel PM, Fallon SC et al (2016) Newborn direct or conjugated bilirubin measurements as a potential screen for biliary atresia. J Pediatr Gastroenterol Nutr 62(6):799–803

    Article  CAS  PubMed  Google Scholar 

  28. Sloane AJ, Nawab US, Carola D, Aghai ZH (2017) Utility of measuring direct bilirubin at first 72 h of age in neonates admitted to the neonatal intensive care unit. J Perinatol

  29. Harpavat S, Garcia-Prats JA, Shneider BL (2016) Newborn bilirubin screening for biliary atresia. N Engl J Med 375(6):605–606

    Article  PubMed  Google Scholar 

  30. Chen SM, Chang MH, Du JC, Lin CC, Chen AC, Lee HC et al (2006) Screening for biliary atresia by infant stool color card in Taiwan. Pediatrics 117(4):1147–1154

    Article  PubMed  Google Scholar 

  31. Wildhaber BE, Majno P, Mayr J, Zachariou Z, Hohlfeld J, Schwoebel M et al (2008) Biliary atresia: Swiss national study, 1994–2004. J Pediatr Gastroenterol Nutr 46(3):299–307

    Article  PubMed  Google Scholar 

  32. Lee M, Chen SC, Yang HY, Huang JH, Yeung CY, Lee HC (2016) Infant stool color card screening helps reduce the hospitalization rate and mortality of biliary atresia: a 14-year nationwide cohort study in Taiwan. Medicine (Baltimore) 95(12):e3166

    Article  Google Scholar 

  33. Gu YH, Yokoyama K, Mizuta K, Tsuchioka T, Kudo T, Sasaki H et al (2015) Stool color card screening for early detection of biliary atresia and long-term native liver survival: a 19-year cohort study in Japan. J Pediatr 166(4):897–902.e1

    Article  PubMed  Google Scholar 

  34. Kong YY, Zhao JQ, Wang J, Qiu L, Yang HH, Diao M et al (2016) Modified stool color card with digital images was efficient and feasible for early detection of biliary atresia-a pilot study in Beijing, China. World J Pediatr 12(4):415–420

    Article  PubMed  Google Scholar 

  35. Schreiber RA, Masucci L, Kaczorowski J, Collet JP, Lutley P, Espinosa V et al (2014) Home-based screening for biliary atresia using infant stool colour cards: a large-scale prospective cohort study and cost-effectiveness analysis. J Med Screen 21(3):126–132

    Article  PubMed  Google Scholar 

  36. Mogul D, Zhou M, Intihar P, Schwarz K, Frick K (2015) Cost-effective analysis of screening for biliary atresia with the stool color card. J Pediatr Gastroenterol Nutr 60(1):91–98

    Article  PubMed  Google Scholar 

  37. Franciscovich A, Vaidya D, Doyle J, Bolinger J, Capdevila M, Rice M et al (2015) PoopMD, a mobile health application, accurately identifies infant acholic stools. PLoS One 10(7):e0132270

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper S. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodhue, C., Fenlon, M. & Wang, K.S. Newborn screening for biliary atresia in the United States. Pediatr Surg Int 33, 1315–1318 (2017). https://doi.org/10.1007/s00383-017-4159-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-017-4159-3

Keywords

Navigation