Skip to main content

Advertisement

Log in

Comparison of in vivo immune responses following transplantation of vascularized and non-vascularized human dermo-epidermal skin substitutes

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Autologous bio-engineered dermo-epidermal skin substitutes (DESS) represent an alternative therapeutic option for a definitive treatment of skin defects in human patients. Largely, the interaction of host immune cells with transplanted DESS is considered to be essential for the granulation tissue formation, graft take, and its functionality. The aim of this study was to compare the spatiotemporal distribution and density of host-derived monocytes/macrophages and granulocytes in vascularized (vascDESS) versus non-vascularized DESS (non-vascDESS) in a rat model.

Methods

Keratinocytes and the stromal vascular fraction (SVF) were derived from human skin or human adipose tissue, respectively. Human SVF containing both endothelial and mesenchymal/stromal progenitors was used to develop a vascularized collagen type I-based dermal component in vitro. The donor-matched, monolayer-expanded adipose stromal cells lacking endothelial cells were used as a negative control. Subsequently, human keratinocytes were seeded on top of hydrogels to build dermo-epidermal skin grafts. After transplantation onto full-thickness skin wounds on the back of immuno-incompetent rats, grafts were excised and analyzed after 1 and 3 weeks. The expression of distinct inflammatory cell markers specific for host-derived monocytes/macrophages (CD11b, CD68) or granulocytes (HIS48) was analyzed by immunofluorescence microscopy.

Results

All skin grafts were infiltrated by host-derived monocytes/macrophages (CD11b+, CD68+) and granulocytes (HIS48+) between 1–3 week post-transplantation. When compared to non-vascDESS, the vascDESS showed an increased granulocyte infiltration at all time points analyzed with the majority of cells scattered throughout the whole dermal part. Whereas a moderate number of rat monocytes/macrophages (CD11b+, CD68+) were found in vascDESS at 1 week, only a few cells were detected in non-vascDESS. We observed a time-dependent decrease of monocytes/macrophages in all transplants at 3 weeks.

Conclusions

These results demonstrate a distinct spatiotemporal distribution of monocytes/macrophages as well as granulocytes in our transplants that closely resemble the one observed during physiological wound healing. The differences identified between vascDESS and non-vascDESS may indicate that human endothelial cells lining blood capillaries of vascDESS accelerate infiltration of monocytes and leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Loss M, Wedler V, Kunzi W, Meuli-Simmen C, Meyer VE (2000) Artificial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93% of TBSA. Burns 26:644–652

    Article  CAS  PubMed  Google Scholar 

  2. Klar AS, Bottcher-Haberzeth S, Biedermann T, Schiestl C, Reichmann E, Meuli M (2014) Analysis of blood and lymph vascularization patterns in tissue-engineered human dermo-epidermal skin analogs of different pigmentation. Pediatr Surg Int 30:223–231

    Article  PubMed  Google Scholar 

  3. Klar AS, Guven S, Biedermann T, Luginbuhl J, Bottcher-Haberzeth S, Meuli-Simmen C, Meuli M, Martin I, Scherberich A, Reichmann E (2014) Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials 35:5065–5078

    Article  CAS  PubMed  Google Scholar 

  4. Marino D, Luginbuhl J, Scola S, Meuli M, Reichmann E (2014) Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 6:221ra14

    Article  PubMed  Google Scholar 

  5. Bottcher-Haberzeth S, Klar AS, Biedermann T, Schiestl C, Meuli-Simmen C, Reichmann E, Meuli M (2013) “Trooping the color”: restoring the original donor skin color by addition of melanocytes to bioengineered skin analogs. Pediatr Surg Int 29:239–247

    Article  PubMed  Google Scholar 

  6. Bottcher-Haberzeth S, Biedermann T, Pontiggia L, Braziulis E, Schiestl C, Hendriks B, Eichhoff OM, Widmer DS, Meuli-Simmen C, Meuli M, Reichmann E (2013) Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes. J Invest Dermatol 133:316–324

    Article  PubMed  Google Scholar 

  7. Bottcher-Haberzeth S, Biedermann T, Schiestl C, Hartmann-Fritsch F, Schneider J, Reichmann E, Meuli M (2012) Matriderm(R) 1 mm versus Integra(R) Single Layer 1.3 mm for one-step closure of full thickness skin defects: a comparative experimental study in rats. Pediatr Surg Int 28:171–177

    Article  PubMed  Google Scholar 

  8. Biedermann T, Klar AS, Bottcher-Haberzeth S, Schiestl C, Reichmann E, Meuli M (2014) Tissue-engineered dermo-epidermal skin analogs exhibit de novo formation of a near natural neurovascular link 10 weeks after transplantation. Pediatr Surg Int 30:165–172

    Article  PubMed  Google Scholar 

  9. Biedermann T, Pontiggia L, Bottcher-Haberzeth S, Tharakan S, Braziulis E, Schiestl C, Meuli M, Reichmann E (2010) Human eccrine sweat gland cells can reconstitute a stratified epidermis. J Invest Dermatol 130:1996–2009

    Article  CAS  PubMed  Google Scholar 

  10. Nishio N, Okawa Y, Sakurai H, Isobe KI (2008) Neutrophil depletion delays wound repair in aged mice. Age 30:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  CAS  PubMed  Google Scholar 

  12. Martin P, Leibovich SJ (2005) Inflammatory cells during wound, repair: the good, the bad and the ugly. Trends Cell Biol 15:599–607

    Article  CAS  PubMed  Google Scholar 

  13. Klar AS, Bottcher-Haberzeth S, Biedermann T, Michalak K, Kisiel M, Reichmann E, Meuli M (2014) Differential expression of granulocyte, macrophage, and hypoxia markers during early and late wound healing stages following transplantation of tissue-engineered skin substitutes of human origin. Pediatr Surg Int 30:1257–1264

    Article  PubMed  Google Scholar 

  14. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  15. Stroncek JD, Reichert WM (2008) Overview of wound healing in different tissue types. In: Reichert WM (ed) Indwelling neural implants: strategies for contending with the in vivo environment. CRC Press, Boca Raton

    Google Scholar 

  16. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100

    Article  CAS  PubMed  Google Scholar 

  17. McNally AK, Anderson JM (2011) Macrophage fusion and multinucleated giant cells of inflammation. Adv Exp Med Biol 713:97–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the EU-FP6 project EuroSTEC (soft tissue engineering for congenital birth defects in children: contract: LSHB-CT-2006-037409), by the EU-FP7 project EuroSkinGraft (FP7/2007-2013: Grant Agreement Nr 279024), by the EU-FP7 (MultiTERM, Grant Agreement Nr 238551), and the Clinical Research Priority Programs (CRPP) of the Faculty of Medicine of the University of Zurich. We are particularly grateful to the Gaydoul Foundation and the sponsors of “DonaTissue” (Thérèse Meier and Robert Zingg) for their generous financial support and interest in our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Meuli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klar, A.S., Biedermann, T., Simmen-Meuli, C. et al. Comparison of in vivo immune responses following transplantation of vascularized and non-vascularized human dermo-epidermal skin substitutes. Pediatr Surg Int 33, 377–382 (2017). https://doi.org/10.1007/s00383-016-4031-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-016-4031-x

Keywords

Navigation