Skip to main content
Log in

Expression of T-box transcription factors 2, 4 and 5 is decreased in the branching airway mesenchyme of nitrofen-induced hypoplastic lungs

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Pulmonary hypoplasia (PH), characterized by smaller lung size and reduced airway branching, remains a major therapeutic challenge in newborns with congenital diaphragmatic hernia (CDH). T-box transcription factors (Tbx) have been identified as key components of the gene network that regulates fetal lung development. Tbx2, Tbx4 and Tbx5 are expressed throughout the mesenchyme of the developing lung, regulating the process of lung branching morphogenesis. Furthermore, lungs of Tbx2-, Tbx4- and Tbx5-deficient mice are hypoplastic and exhibit decreased lung branching, similar to PH in human CDH. We hypothesized that the expression of Tbx2, Tbx4 and Tbx5 is decreased in the branching airway mesenchyme of hypoplastic rat lungs with nitrofen-induced CDH.

Methods

Time-mated rats received either nitrofen or vehicle on gestational day 9 (D9). Fetuses were killed on D15, D18 and D21, and dissected lungs were divided into control and nitrofen-exposed specimens. Pulmonary gene expression of Tbx2, Tbx4 and Tbx5 was investigated by quantitative real-time polymerase chain reaction. Immunofluorescence double staining for Tbx2, Tbx4 and Tbx5 was combined with the mesenchymal marker Fgf10 to assess protein expression and localization in branching airway tissue.

Results

Relative mRNA levels of Tbx2, Tbx4 and Tbx5 were significantly reduced in lungs of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Confocal laser scanning microscopy showed markedly diminished immunofluorescence of Tbx2, Tbx4 and Tbx5 in mesenchymal cells surrounding branching airways of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls.

Conclusion

Decreased expression of Tbx2, Tbx4 and Tbx5 in the pulmonary mesenchyme during fetal lung development may lead to a decrease or arrest of airway branching, thus contributing to PH in the nitrofen-induced CDH model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McGivern MR, Best KE, Rankin J, Wellesley D, Greenlees R, Addor MC, Arriola L, de Walle H, Barisic I, Beres J, Bianchi F, Calzolari E, Doray B, Draper ES, Garne E, Gatt M, Haeusler M, Khoshnood B, Klungsoyr K, Latos-Bielenska A, O’Mahony M, Braz P, McDonnell B, Mullaney C, Nelen V, Queisser-Luft A, Randrianaivo H, Rissmann A, Rounding C, Sipek A, Thompson R, Tucker D, Wertelecki W, Martos C (2015) Epidemiology of congenital diaphragmatic hernia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed 100(2):F137–F144

    Article  PubMed  Google Scholar 

  2. McHoney M (2015) Congenital diaphragmatic hernia, management in the newborn. Pediatr Surg Int 31(11):1005–1013

    Article  PubMed  Google Scholar 

  3. Jeanty C, Kunisaki SM, MacKenzie TC (2014) Novel non-surgical prenatal approaches to treating congenital diaphragmatic hernia. Semin Fetal Neonatal Med 19(6):349–356

    Article  PubMed  Google Scholar 

  4. Tovar JA (2012) Congenital diaphragmatic hernia. Orphanet J Rare Dis 7:1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Keijzer R, Puri P (2010) Congenital diaphragmatic hernia. Semin Pediatr Surg 19(3):180–185

    Article  PubMed  Google Scholar 

  6. Kotecha S, Barbato A, Bush A, Claus F, Davenport M, Delacourt C, Deprest J, Eber E, Frenckner B, Greenough A, Nicholson AG, Anton-Pacheco JL, Midulla F (2012) Congenital diaphragmatic hernia. Eur Respir J 39(4):820–829

    Article  CAS  PubMed  Google Scholar 

  7. Sabharwal AJ, Davis CF, Howatson AG (2000) Post-mortem findings in fetal and neonatal congenital diaphragmatic hernia. Eur J Pediatr Surg 10(2):96–99

    Article  CAS  PubMed  Google Scholar 

  8. Warburton D, Bellusci S, De Langhe S, Del Moral PM, Fleury V, Mailleux A, Tefft D, Unbekandt M, Wang K, Shi W (2005) Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 57(5 Pt 2):26R–37R

    Article  PubMed  Google Scholar 

  9. Friedmacher F, Gosemann JH, Fujiwara N, Takahashi H, Hofmann A, Puri P (2013) Expression of Sproutys and SPREDs is decreased during lung branching morphogenesis in nitrofen-induced pulmonary hypoplasia. Pediatr Surg Int 29(11):1193–1198

    Article  PubMed  Google Scholar 

  10. Friedmacher F, Fujiwara N, Hofmann AD, Takahashi H, Gosemann JH, Puri P (2014) Expression of Eya1 and Six1 is decreased in distal airways of rats with experimental pulmonary hypoplasia. J Pediatr Surg 49(2):301–304

    Article  PubMed  Google Scholar 

  11. Cebra-Thomas JA, Bromer J, Gardner R, Lam GK, Sheipe H, Gilbert SF (2003) T-box gene products are required for mesenchymal induction of epithelial branching in the embryonic mouse lung. Dev Dyn 226(1):82–90

    Article  CAS  PubMed  Google Scholar 

  12. Chapman DL, Garvey N, Hancock S, Alexiou M, Agulnik SI, Gibson-Brown JJ, Cebra-Thomas J, Bollag RJ, Silver LM, Papaioannou VE (1996) Expression of the T-box family genes, Tbx1–Tbx5, during early mouse development. Dev Dyn 206(4):379–390

    Article  CAS  PubMed  Google Scholar 

  13. Arora R, Metzger RJ, Papaioannou VE (2012) Multiple roles and interactions of Tbx4 and Tbx5 in development of the respiratory system. PLoS Genet 8(8):e1002866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ludtke TH, Farin HF, Rudat C, Schuster-Gossler K, Petry M, Barnett P, Christoffels VM, Kispert A (2013) Tbx2 controls lung growth by direct repression of the cell cycle inhibitor genes Cdkn1a and Cdkn1b. PLoS Genet 9(1):e1003189

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eastwood MP, Russo FM, Toelen J, Deprest J (2015) Medical interventions to reverse pulmonary hypoplasia in the animal model of congenital diaphragmatic hernia: a systematic review. Pediatr Pulmonol 50(8):820–838

    Article  PubMed  Google Scholar 

  16. Montedonico S, Nakazawa N, Puri P (2008) Congenital diaphragmatic hernia and retinoids: searching for an etiology. Pediatr Surg Int 24(7):755–761

    Article  PubMed  PubMed Central  Google Scholar 

  17. Noble BR, Babiuk RP, Clugston RD, Underhill TM, Sun H, Kawaguchi R, Walfish PG, Blomhoff R, Gundersen TE, Greer JJ (2007) Mechanisms of action of the congenital diaphragmatic hernia-inducing teratogen nitrofen. Am J Physiol Lung Cell Mol Physiol 293(4):L1079–L1087

    Article  CAS  PubMed  Google Scholar 

  18. Herriges M, Morrisey EE (2014) Lung development: orchestrating the generation and regeneration of a complex organ. Development 141(3):502–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miura T (2008) Modeling lung branching morphogenesis. Curr Top Dev Biol 81:291–310

    Article  PubMed  Google Scholar 

  20. Roth-Kleiner M, Post M (2003) Genetic control of lung development. Biol Neonate 84(1):83–88

    Article  PubMed  Google Scholar 

  21. Short K, Hodson M, Smyth I (2013) Spatial mapping and quantification of developmental branching morphogenesis. Development 140(2):471–478

    Article  CAS  PubMed  Google Scholar 

  22. Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124(23):4867–4878

    CAS  PubMed  Google Scholar 

  23. Weaver M, Dunn NR, Hogan BL (2000) Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 127(12):2695–2704

    CAS  PubMed  Google Scholar 

  24. Teramoto H, Yoneda A, Puri P (2003) Gene expression of fibroblast growth factors 10 and 7 is downregulated in the lung of nitrofen-induced diaphragmatic hernia in rats. J Pediatr Surg 38(7):1021–1024

    Article  PubMed  Google Scholar 

  25. Papaioannou VE, Silver LM (1998) The T-box gene family. BioEssays 20(1):9–19

    Article  CAS  PubMed  Google Scholar 

  26. Smith J (1999) T-box genes: what they do and how they do it. Trends Genet 15(4):154–158

    Article  CAS  PubMed  Google Scholar 

  27. Minoo P (2000) Transcriptional regulation of lung development: emergence of specificity. Respir Res 1(2):109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Puri.

Ethics declarations

Funding

This research was supported by the National Children’s Research Centre and the Children’s Medical and Research Foundation.

Conflict of interest

The authors declare that this research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, T., Friedmacher, F., Zimmer, J. et al. Expression of T-box transcription factors 2, 4 and 5 is decreased in the branching airway mesenchyme of nitrofen-induced hypoplastic lungs. Pediatr Surg Int 33, 139–143 (2017). https://doi.org/10.1007/s00383-016-4005-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-016-4005-z

Keywords

Navigation