Skip to main content

Advertisement

Log in

Decreased Endoglin expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia rat model

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Aim of the Study

Pulmonary hypertension (PH) remains a therapeutical challenge in neonates born with congenital diaphragmatic hernia (CDH). Endoglin (Eng), an auxiliary receptor component of the transforming growth factor β (TGFβ) signalling pathway, is expressed mainly by endothelial cells and has been found to be involved in angiogenesis and vascular remodelling. Genetic studies have linked TGFβ and Eng mutations to human arterial PH and other cardiovascular syndromes. Eng interacts with the TGFβ receptors 1 and 2 (Tgfβr1, Tgfβr2). We designed this study to investigate the hypothesis that Eng is altered in the pulmonary vasculature of rats with nitrofen-induced CDH subjected to its interdependency with Tgfβr1 and Tgfβr2.

Methods

After ethical approval (Rec 913b), time-pregnant Sprague–Dawley rats received either nitrofen or olive oil on gestational day (D9). The foetuses (n = 22) were sacrificed and divided into CDH and control group on D21. Gene and protein expressions of Eng, Tgfβr1 and Tgfβr2 were assessed via qRT-PCR and western blotting. Immunofluorescence staining for Eng was combined with CD34 to evaluate Eng expression in the pulmonary vasculature.

Main results

Relative mRNA levels of Eng, Tgfβr1 and Tgfβr2 were significantly downregulated in CDH lungs compared to controls (Eng CDH 0.341 ± 0.022, Eng Ctrl 0.471 ± 0.031, p = 0.0015; Tgfβr1 CDH 0.161 ± 0.008, Tgfβr1 Ctrl 0.194 ± 0.01, p = 0.0114; Tgfβr2 CDH 0.896 ± 0.099, Tgfβr2 Ctrl 1.379 ± 0.081, p = 0.0006) Western blotting confirmed the reduced pulmonary protein expression of these three proteins in the CDH lungs. A markedly diminished endothelial expression of Eng in the pulmonary vasculature of nitrofen-exposed foetuses compared to controls was seen in laser scanning confocal-microscopy.

Conclusion

This study demonstrates for the first time a reduced expression of Endoglin in the pulmonary vasculature of nitrofen-induced CDH. Abnormal Eng/Tgfβr1/Tgfβr2 signalling may contribute to impaired vascular remodelling and development of PH in this CDH animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wynn J, Yu L, Chung WK (2014) Genetic causes of congenital diaphragmatic hernia. Semin Fetal Neonatal Med 19(6):324–330. doi:10.1016/j.siny.2014.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pierro M, Thebaud B (2014) Understanding and treating pulmonary hypertension in congenital diaphragmatic hernia. Semin Fetal Neonatal Med 19(6):357–363. doi:10.1016/j.siny.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  3. Keijzer R, Puri P (2010) Congenital diaphragmatic hernia. Semin Pediatr Surg 19(3):180–185. doi:10.1053/j.sempedsurg.2010.03.001

    Article  PubMed  Google Scholar 

  4. Lally KP (2016) Congenital diaphragmatic hernia—the past 25 (or so) years. J Pediatr Surg 51(5):695–698. doi:10.1016/j.jpedsurg.2016.02.005

    Article  PubMed  Google Scholar 

  5. Gien J, Kinsella JP (2016) Management of pulmonary hypertension in infants with congenital diaphragmatic hernia. J Perinatol 36(Suppl 2):S28–S31. doi:10.1038/jp.2016.46

    Article  PubMed  Google Scholar 

  6. Kool H, Mous D, Tibboel D et al (2014) Pulmonary vascular development goes awry in congenital lung abnormalities. Birth Defects Res C Embryo Today 102(4):343–358. doi:10.1002/bdrc.21085

    Article  CAS  PubMed  Google Scholar 

  7. Guignabert C, Tu L, Girerd B et al (2015) New molecular targets of pulmonary vascular remodeling in pulmonary arterial hypertension: importance of endothelial communication. Chest 147(2):529–537. doi:10.1378/chest.14-0862

    Article  PubMed  Google Scholar 

  8. Chaouat A, Coulet F, Favre C et al (2004) Endoglin germline mutation in a patient with hereditary haemorrhagic telangiectasia and dexfenfluramine associated pulmonary arterial hypertension. Thorax 59(5):446–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Machado RD, Southgate L, Eichstaedt CA et al (2015) Pulmonary arterial hypertension: a current perspective on established and emerging molecular genetic defects. Hum Mutat 36(12):1113–1127. doi:10.1002/humu.22904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Machado RD, Eickelberg O, Elliott CG et al (2009) Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 54(1 Suppl):S32–S42. doi:10.1016/j.jacc.2009.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilbane AJ, Derrett-Smith E, Trinder SL et al (2015) Impaired bone morphogenetic protein receptor II signaling in a transforming growth factor-beta-dependent mouse model of pulmonary hypertension and in systemic sclerosis. Am J Respir Crit Care Med 191(6):665–677. doi:10.1164/rccm.201408-1464OC

    Article  CAS  PubMed  Google Scholar 

  12. Dominguez-Avila N, Ruiz-Castaneda G, Gonzalez-Ramirez J et al (2013) Over, and underexpression of endothelin 1 and TGF-beta family ligands and receptors in lung tissue of broilers with pulmonary hypertension. Biomed Res Int 2013:190382. doi:10.1155/2013/190382

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ferreira RC, Montenegro SM, Domingues AL et al (2014) TGF beta and IL13 in Schistosomiasis mansoni associated pulmonary arterial hypertension; a descriptive study with comparative groups. BMC Infect Dis 14:282. doi:10.1186/1471-2334-14-282

    Article  PubMed Central  Google Scholar 

  14. Yung LM, Nikolic I, Paskin-Flerlage SD et al (2016) A selective TGFbeta ligand trap attenuates pulmonary hypertension. Am J Respir Crit Care Med. doi:10.1164/rccm.201510-1955OC

    PubMed  Google Scholar 

  15. Chai SD, Liu T, Dong MF et al (2016) Inactivated Pseudomonas aeruginosa inhibits hypoxia-induced pulmonary hypertension by preventing TGF-beta1/Smad signaling. Braz J Med Biol Res 49(10):e5526. doi:10.1590/1414-431X20165526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng F, Harper RL, Reynolds PN (2016) BMPR2 gene delivery reduces mutation-related PAH and counteracts TGF-beta-mediated pulmonary cell signalling. Respirology 21(3):526–532. doi:10.1111/resp.12712

    Article  PubMed  Google Scholar 

  17. Yan Y, Wang X-J, Li S-Q et al (2016) Elevated levels of plasma transforming growth factor-beta1 in idiopathic and heritable pulmonary arterial hypertension. Int J Cardiol 222:368–374. doi:10.1016/j.ijcard.2016.07.192

    Article  PubMed  Google Scholar 

  18. Oue T, Shima H, Taira Y et al (2000) Administration of antenatal glucocorticoids upregulates peptide growth factor gene expression in nitrofen-induced congenital diaphragmatic hernia in rats. J Pediatr Surg 35(1):109–112

    Article  CAS  PubMed  Google Scholar 

  19. Burgos CM, Uggla AR, Fagerstrom-Billai F et al (2010) Gene expression analysis in hypoplastic lungs in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 45(7):1445–1454. doi:10.1016/j.jpedsurg.2009.09.023

    Article  PubMed  Google Scholar 

  20. Gosemann J-H, Friedmacher F, Fujiwara N et al (2013) Disruption of the bone morphogenetic protein receptor 2 pathway in nitrofen-induced congenital diaphragmatic hernia. Birth Defects Res B Dev Reprod Toxicol 98(4):304–309. doi:10.1002/bdrb.21065

    Article  CAS  PubMed  Google Scholar 

  21. Lopez-Novoa JM, Bernabeu C (2010) The physiological role of Endoglin in the cardiovascular system. Am J Physiol Heart Circ Physiol 299(4):H959–H974. doi:10.1152/ajpheart.01251.2009

    Article  CAS  PubMed  Google Scholar 

  22. ten Dijke P, Goumans M-J, Pardali E (2008) Endoglin in angiogenesis and vascular diseases. Angiogenesis 11(1):79–89. doi:10.1007/s10456-008-9101-9

    Article  CAS  PubMed  Google Scholar 

  23. Guerrero-Esteo M, Sanchez-Elsner T, Letamendia A et al (2002) Extracellular and cytoplasmic domains of Endoglin interact with the transforming growth factor-beta receptors I and II. J Biol Chem 277(32):29197–29209. doi:10.1074/jbc.M111991200

    Article  CAS  PubMed  Google Scholar 

  24. Pfarr N, Fischer C, Ehlken N et al (2013) Hemodynamic and genetic analysis in children with idiopathic, heritable, and congenital heart disease associated pulmonary arterial hypertension. Respir Res 14:3. doi:10.1186/1465-9921-14-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McDonald J, Wooderchak-Donahue W, VanSant Webb C et al (2015) Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet 6:1. doi:10.3389/fgene.2015.00001

    Article  PubMed  PubMed Central  Google Scholar 

  26. ten Dijke P, Arthur HM (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 8(11):857–869. doi:10.1038/nrm2262

    Article  PubMed  Google Scholar 

  27. Takahashi T, Friedmacher F, Zimmer J et al (2016) Fibrillin-1 expression is decreased in the diaphragmatic muscle connective tissue of nitrofen-induced congenital diaphragmatic hernia. Eur J Pediatr Surg. doi:10.1055/s-0036-1587586

    Google Scholar 

  28. Zimmer J, Takahashi T, Hofmann AD et al (2016) Imbalance of NFATc2 and KV1.5 expression in rat pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia. Eur J Pediatr. doi:10.1055/s-0036-1587589

    Google Scholar 

  29. Torsney E, Charlton R, Diamond AG et al (2003) Mouse model for hereditary hemorrhagic telangiectasia has a generalized vascular abnormality. Circulation 107(12):1653–1657. doi:10.1161/01.CIR.0000058170.92267.00

    Article  PubMed  Google Scholar 

  30. Li DY, Sorensen LK, Brooke BS et al (1999) Defective angiogenesis in mice lacking Endoglin. Science 284(5419):1534–1537

    Article  CAS  PubMed  Google Scholar 

  31. Larsson J, Goumans MJ, Sjostrand LJ et al (2001) Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J 20(7):1663–1673. doi:10.1093/emboj/20.7.1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goumans MJ, Mummery C (2000) Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44(3):253–265

    CAS  PubMed  Google Scholar 

  33. Zakrzewicz A, Kouri FM, Nejman B et al (2007) The transforming growth factor-beta/Smad2,3 signalling axis is impaired in experimental pulmonary hypertension. Eur Respir J 29(6):1094–1104. doi:10.1183/09031936.00138206

    Article  CAS  PubMed  Google Scholar 

  34. Mata-Greenwood E, Meyrick B, Steinhorn RH et al (2003) Alterations in TGF-beta1 expression in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 285(1):L209–L221. doi:10.1152/ajplung.00171.2002

    Article  CAS  PubMed  Google Scholar 

  35. Gore B, Izikki M, Mercier O et al (2014) Key role of the endothelial TGF-beta/ALK1/Endoglin signaling pathway in humans and rodents pulmonary hypertension. PLoS One 9(6):e100310. doi:10.1371/journal.pone.0100310

    Article  PubMed  PubMed Central  Google Scholar 

  36. Faughnan ME, Granton JT, Young LH (2009) The pulmonary vascular complications of hereditary haemorrhagic telangiectasia. Eur Respir J 33(5):1186–1194. doi:10.1183/09031936.00061308

    Article  CAS  PubMed  Google Scholar 

  37. Carvalho RL, Jonker L, Goumans MJ et al (2004) Defective paracrine signalling by TGFbeta in yolk sac vasculature of Endoglin mutant mice: a paradigm for hereditary haemorrhagic telangiectasia. Development 131(24):6237–6247. doi:10.1242/dev.01529

    Article  CAS  PubMed  Google Scholar 

  38. Lebrin F, Goumans MJ, Jonker L et al (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23(20):4018–4028. doi:10.1038/sj.emboj.7600386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blanco FJ, Santibanez JF, Guerrero-Esteo M et al (2005) Interaction and functional interplay between Endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J Cell Physiol 204(2):574–584. doi:10.1002/jcp.20311

    Article  CAS  PubMed  Google Scholar 

  40. Hofmann AD, Zimmer J, Takahashi T et al (2016) The role of activin receptor-like kinase 1 signaling in the pulmonary vasculature of experimental diaphragmatic hernia. Eur J Pediatr Surg 26(1):106–111. doi:10.1055/s-0035-1566105

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Puri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmer, J., Takahashi, T., Hofmann, A.D. et al. Decreased Endoglin expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr Surg Int 33, 263–268 (2017). https://doi.org/10.1007/s00383-016-4004-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-016-4004-0

Keywords

Navigation