Skip to main content

Advertisement

Log in

Possible role of increased oxidative stress in pulmonary hypertension in experimental diaphragmatic hernia

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Congenital diaphragmatic hernia (CDH) is one of the causes of respiratory failure in newborns due to lung hypoplasia and pulmonary abnormalities leading to pulmonary hypertension (PH). NAD(P)H oxidase (Nox) is a family of isoenzymes that generate reactive oxygen species (ROS) which can contribute to PH-induced vascular dysfunction. On the other hand, superoxide dismutase (SOD) 1–2 and catalase are the antioxidant enzymes that eliminate the excess of ROS in pulmonary vascular cells. Our aim is to examine whether PH-associated with CDH is due to a dysregulation of ROS production in lungs from CDH fetuses.

Methods

Pregnant rats received either 100 mg nitrofen or vehicle on E9.5. Fetuses were recovered on E21. (1) Nox activity, (2) H2O2 production and (3) mRNA levels of Nox1, Nox2, Nox4, SOD1, SOD2 and catalase were analyzed in fetal lungs.

Results

Nox activity and Nox1 and Nox2 mRNA levels were increased in the lungs of fetuses with CDH. However, there were no changes in H2O2 production and Nox4 mRNA levels. SOD1, SOD2 and catalase were decreased.

Conclusions

The raised oxidative stress due to increase in ROS generation by Nox isoenzymes and dysfunction of antioxidant enzymes seems to be a potential mechanism responsible on PH-associated with CDH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tovar JA (2012) Congenital diaphragmatic hernia. Orphanet J Rare Dis 7:1

    Article  PubMed Central  PubMed  Google Scholar 

  2. Kool H, Mous D, Tibboel D et al (2014) Pulmonary vascular development goes awry in congenital lung abnormalities. Birth Defects Res C Embryo Today 102:343–358

    Article  CAS  PubMed  Google Scholar 

  3. Sakao S, Tatsumi K, Voelkel NF (2010) Reversible or irreversible remodeling in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 43:629–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Rosanna DP, Salvatore C (2012) Reactive oxygen species, inflammation, and lung diseases. Curr Pharm Des 18:3889–3900

    Article  PubMed  Google Scholar 

  5. Montezano AC, Touyz RM (2012) Molecular mechanisms of hypertension–reactive oxygen species and antioxidants: a basic science update for the clinician. Can J Cardiol 28:288–295

    Article  CAS  PubMed  Google Scholar 

  6. Amanso AM, Griendling KK (2012) Differential roles of NADPH oxidases in vascular physiology and pathophysiology. Front Biosci (Schol Ed) 4:1044–1064

    Article  Google Scholar 

  7. Dennis KE, Aschner JL, Milatovic D et al (2009) NADPH oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets. Am J Physiol Lung Cell Mol Physiol 297:L596–L607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fresquet F, Pourageaud F, Leblais V et al (2006) Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia. Br J Pharmacol 148:714–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Seta F, Rahmani M, Turner PV et al (2011) Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline. PLoS ONE 6:e23439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Afolayan AJ, Eis A, Teng RJ et al (2012) Decreases in manganese superoxide dismutase expression and activity contribute to oxidative stress in persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 303:L870–L879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Aggarwal S, Gross CM, Sharma S et al (2013) Reactive oxygen species in pulmonary vascular remodeling. Compr Physiol 3:1011–1034

    PubMed Central  PubMed  Google Scholar 

  12. Awad H, Nolette N, Hinton M et al (2014) AMPK and FoxO1 regulate catalase expression in hypoxic pulmonary arterial smooth muscle. Pediatr Pulmonol 49:885–897

    Article  PubMed  Google Scholar 

  13. Acker SN, Seedorf GJ, Abman SH et al (2015) Altered pulmonary artery endothelial-smooth muscle cell interactions in experimental congenital diaphragmatic hernia. Pediatr Res 77:511–519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Dingemann J, Doi T, Ruttenstock E et al (2010) Abnormal platelet-derived growth factor signaling accounting for lung hypoplasia in experimental congenital diaphragmatic hernia. J Pediatr Surg 45:1989–1994

  15. Gosemann JH, Friedmacher F, Hunziker M et al (2013) Increased activation of NADPH oxidase 4 in the pulmonary vasculature in experimental diaphragmatic hernia. Pediatr Surg Int 29:3–8

    Article  PubMed  Google Scholar 

  16. Gonzalez-Reyes S, Martinez L, Martinez-Calonge W et al (2006) Effects of antioxidant vitamins on molecular regulators involved in lung hypoplasia induced by nitrofen. J Pediatr Surg 41:1446–1452

    Article  PubMed  Google Scholar 

  17. Gonzalez-Reyes S, Martinez L, Martinez-Calonge W et al (2006) Effects of nitrofen and vitamins A, C and E on maturation of cultured human H441 pneumocytes. Biol Neonate 90:9–16

    Article  CAS  PubMed  Google Scholar 

  18. Corbett HJ, Connell MG, Fernig DG et al (2012) ANG-1 TIE-2 and BMPR signalling defects are not seen in the nitrofen model of pulmonary hypertension and congenital diaphragmatic hernia. PLoS ONE 7:e35364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. DeMarco VG, Habibi J, Whaley-Connell AT et al (2008) Oxidative stress contributes to pulmonary hypertension in the transgenic (mRen2)27 rat. Am J Physiol Heart Circ Physiol 294:H2659–H2668

    Article  CAS  PubMed  Google Scholar 

  20. Forstermann U (2008) Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 5:338–349

    Article  PubMed  Google Scholar 

  21. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    Article  CAS  PubMed  Google Scholar 

  22. Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501

    Article  CAS  PubMed  Google Scholar 

  23. Li JM, Shah AM (2002) Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J Biol Chem 277:19952–19960

    Article  CAS  PubMed  Google Scholar 

  24. Jacob C (2014) Special issue: redox active natural products and their interaction with cellular signalling pathways. Molecules 19:19588–19593

    Article  CAS  PubMed  Google Scholar 

  25. Liu JQ, Sham JS, Shimoda LA et al (2003) Hypoxic constriction and reactive oxygen species in porcine distal pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 285:L322–L333

    Article  CAS  PubMed  Google Scholar 

  26. Van Rheen Z, Fattman C, Domarski S et al (2011) Lung extracellular superoxide dismutase overexpression lessens bleomycin-induced pulmonary hypertension and vascular remodeling. Am J Respir Cell Mol Biol 44:500–508

    Article  PubMed Central  PubMed  Google Scholar 

  27. Mittal M, Roth M, Konig P et al (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101:258–267

    Article  CAS  PubMed  Google Scholar 

  28. Fisher JC, Kling DE, Kinane TB et al (2002) Oxidation-reduction (redox) controls fetal hypoplastic lung growth. J Surg Res 106:287–291

    Article  CAS  PubMed  Google Scholar 

  29. Davey MG, Biard JM, Robinson L et al (2005) Surfactant protein expression is increased in the ipsilateral but not contralateral lungs of fetal sheep with left-sided diaphragmatic hernia. Pediatr Pulmonol 39:359–367

    Article  PubMed  Google Scholar 

  30. Sluiter W, Bos AP, Silveri F et al (1992) Nitrofen-induced diaphragmatic hernias in rats: pulmonary antioxidant enzyme activities. Pediatr Res 32:394–398

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Mercedes Salaices of Pharmacology Department from Autónoma University of Madrid for her assistance in measuring Nox activity and H2O2 production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Aras-López.

Additional information

This work was supported by a grant from the RETICS program from the Instituto de Salud Carlos III (RD12/0026/0011) and FEDER funds from the EU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aras-López, R., Tovar, J.A. & Martínez, L. Possible role of increased oxidative stress in pulmonary hypertension in experimental diaphragmatic hernia. Pediatr Surg Int 32, 141–145 (2016). https://doi.org/10.1007/s00383-015-3826-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-015-3826-5

Keywords

Navigation