Skip to main content

Advertisement

Log in

Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

The need for clinically applicable skin substitutes continues to be a matter of fact. Hypothetically, a laboratory grown autologous skin analog with near normal architecture might be a suitable approach to yield both satisfactory functional and cosmetic long-term results. In this study, we explored the use of human endothelial cells derived from freshly isolated adipose stromal vascular fraction (SVF) in a three-dimensional (3D) co-culture model of vascularized bio-engineered skin substitute.

Methods

The SVF was isolated from human white adipose tissue samples and keratinocytes from human skin biopsies. The SVF, in particular endothelial cells, were characterized using flow cytometry and immuofluorescence analysis. Endothelial and mesenchymal progenitors from the SVF formed blood capillaries after seeding into a 3D collagen type I hydrogel in vitro. Subsequently, human keratinocytes were seeded on the top of those hydrogels to develop a vascularized dermo-epidermal skin substitute.

Results

Flow cytometric analysis of surface markers of the freshly isolated SVF showed the expression of endothelial markers (CD31, CD34, CD146), mesenchymal/stromal cell-associated markers (CD44, CD73, CD90, CD105), stem cell markers (CD49f, CD117, CD133), and additionally hematopoietic markers (CD14, CD15, CD45). Further analysis of white adipose-derived endothelial cells (watECs) revealed the co-expression of CD31, CD34, CD90, CD105, and partially CD146 on these cells. WatECs were separated from adipose-stromal cells (watASCs) using FACS sorting. WatASCs and watECs cultured separately in a 3D hydrogel for 3 weeks did not form any vascular structures. Only if co-cultured, both cell types aligned to develop a ramified vascular network in vitro with continuous endothelial lumen formation. Transplantation of those 3D-hydrogels onto immuno-incompetent rats resulted in a rapid connection of human capillaries with the host vessels and formation of functional, blood-perfused mosaic human-rat vessels within only 3–4 days.

Conclusions

Adipose tissue represents an attractive cell source due to the ease of isolation and abundance of endothelial as well as mesenchymal cell lineages. Adipose-derived SVF cells exhibit the ability to form microvascular structures in vitro and support the accelerated blood perfusion in skin substitutes in vivo when transplanted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bottcher-Haberzeth S, Biedermann T, Reichmann E (2010) Tissue engineering of skin. Burns 36:450–460

    Article  PubMed  Google Scholar 

  2. Pontiggia L, Biedermann T, Meuli M, Widmer D, Bottcher-Haberzeth S et al (2009) Markers to evaluate the quality and self-renewing potential of engineered human skin substitutes in vitro and after transplantation. J Invest Dermatol 129:480–490

    Article  PubMed  CAS  Google Scholar 

  3. Pontiggia L, Klar A, Bottcher-Haberzeth S, Biedermann T, Meuli M et al (2013) Optimizing in vitro culture conditions leads to a significantly shorter production time of human dermo-epidermal skin substitutes. Pediatr Surg Int 29:249–256

    Article  PubMed  Google Scholar 

  4. Bottcher-Haberzeth S, Klar AS, Biedermann T, Schiestl C, Meuli-Simmen C et al (2013) “Trooping the color”: restoring the original donor skin color by addition of melanocytes to bioengineered skin analogs. Pediatr Surg Int 29:239–247

    Article  PubMed  Google Scholar 

  5. Biedermann T, Bottcher-Haberzeth S, Klar AS, Pontiggia L, Schiestl C et al (2013) Rebuild, restore, reinnervate: do human tissue engineered dermo-epidermal skin analogs attract host nerve fibers for innervation? Pediatr Surg Int 29:71–78

    Article  PubMed  Google Scholar 

  6. Ko HC, Milthorpe BK, McFarland CD (2007) Engineering thick tissues—the vascularisation problem. Eur Cell Mater 14:1–18

    PubMed  CAS  Google Scholar 

  7. Marino D, Luginbuhl J, Scola S, Meuli M, Reichmann E (2014) Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 6:22ra214

    Article  Google Scholar 

  8. Montano I, Schiestl C, Schneider J, Pontiggia L, Luginbuhl J et al (2010) Formation of human capillaries in vitro: the engineering of prevascularized matrices. Tissue Eng Part A 16:269–282

    Article  PubMed  CAS  Google Scholar 

  9. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M et al (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663

    Article  PubMed  Google Scholar 

  10. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9:702–712

    Article  PubMed  CAS  Google Scholar 

  11. Guven S, Karagianni M, Schwalbe M, Schreiner S, Farhadi J et al (2012) Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax(R) technology. Tissue Eng Part C Methods 18:575–582

    Article  PubMed  PubMed Central  Google Scholar 

  12. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77–85

    Article  PubMed  CAS  Google Scholar 

  13. Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD et al (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36:642–654

    Article  PubMed  CAS  Google Scholar 

  14. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  PubMed  CAS  Google Scholar 

  15. Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038

    PubMed  CAS  Google Scholar 

  16. Tilton RG (1991) Capillary pericytes: perspectives and future trends. J Electron Microsc Tech 19:327–344

    Article  PubMed  CAS  Google Scholar 

  17. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  19. Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR et al (2009) Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 104:1410–1420

    Article  PubMed  CAS  Google Scholar 

  20. Guven S, Karagianni M, Schwalbe M, Schreiner S, Farhadi J et al (2012) Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax® technology. Tissue Eng Part C Methods 18:575–582

    Article  PubMed  PubMed Central  Google Scholar 

  21. Biedermann T, Pontiggia L, Bottcher-Haberzeth S, Tharakan S, Braziulis E et al (2010) Human eccrine sweat gland cells can reconstitute a stratified epidermis. J Invest Dermatol 130:1996–2009

    Article  PubMed  CAS  Google Scholar 

  22. Guven S, Mehrkens A, Saxer F, Schaefer DJ, Martinetti R et al (2011) Engineering of large osteogenic grafts with rapid engraftment capacity using mesenchymal and endothelial progenitors from human adipose tissue. Biomaterials 32:5801–5809

    Article  PubMed  CAS  Google Scholar 

  23. Qiu XF, Zhang YT, Zhao XZ, Zhang SW, Wu JH et al (2015) Enhancement of endothelial differentiation of adipose derived mesenchymal stem cells by a three-dimensional culture system of microwell. Biomaterials 53:600–608

    Article  PubMed  CAS  Google Scholar 

  24. Folkman J, Haudenschild C (1980) Angiogenesis by capillary endothelial cells in culture. Trans Ophthalmol Soc U K 100:346–353

    PubMed  CAS  Google Scholar 

  25. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE et al (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385

    Article  PubMed  Google Scholar 

  26. Scherberich A, Galli R, Jaquiery C, Farhadi J, Martin I (2007) Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells 25:1823–1829

    Article  PubMed  CAS  Google Scholar 

  27. Rae PC, Kelly RD, Egginton S, St John JC (2011) Angiogenic potential of endothelial progenitor cells and embryonic stem cells. Vasc Cell 3:11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Holnthoner W, Hohenegger K, Husa AM, Muehleder S, Meinl A et al (2015) Adipose-derived stem cells induce vascular tube formation of outgrowth endothelial cells in a fibrin matrix. J Tissue Eng Regen Med 9:127–136

    Article  PubMed  CAS  Google Scholar 

  29. Boquest AC, Shahdadfar A, Fronsdal K, Sigurjonsson O, Tunheim SH et al (2005) Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell 16:1131–1141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R et al (2004) Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110:349–355

    Article  PubMed  CAS  Google Scholar 

  31. De Francesco F, Tirino V, Desiderio V, Ferraro G, D’Andrea F et al (2009) Human CD34/CD90 ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries. PLoS One 4:e6537

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE et al (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456

    Article  PubMed  CAS  Google Scholar 

  33. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  PubMed  CAS  Google Scholar 

  34. Lin CS, Xin ZC, Deng CH, Ning H, Lin G et al (2010) Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol 25:807–815

    PubMed  Google Scholar 

  35. Cai X, Lin Y, Hauschka PV, Grottkau BE (2011) Adipose stem cells originate from perivascular cells. Biol Cell 103:435–447

    Article  PubMed  Google Scholar 

  36. Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA (2005) Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am J Transplant 5:1002–1010

    Article  PubMed  Google Scholar 

  37. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  38. Takahashi T, Kalka C, Masuda H, Chen D, Silver M et al (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  PubMed  CAS  Google Scholar 

  39. Rajantie I, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K et al (2004) Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104:2084–2086

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Koh YJ, Koh BI, Kim H, Joo HJ, Jin HK et al (2011) Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells. Arterioscler Thromb Vasc Biol 31:1141–1150

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Meuli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klar, A.S., Güven, S., Zimoch, J. et al. Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute. Pediatr Surg Int 32, 17–27 (2016). https://doi.org/10.1007/s00383-015-3808-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-015-3808-7

Keywords

Navigation