Skip to main content

Advertisement

Log in

Elevated Th17 cells accompanied by decreased regulatory T cells and cytokine environment in infants with biliary atresia

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the role of Th17 and Treg cells in biliary atresia (BA) and to assess the liver cytokine environment in BA patients.

Methods

The percentages of Th17 and Treg cells in peripheral blood mononuclear cells (PBMCs) of BA patients and healthy controls (HC) were evaluated. The serum concentrations of IL-17a and IL-23 as well as Foxp3, IL-17a, ROR-γt, IL-6, IL-1β and TGF-β1 m-RNA and protein expressions in liver tissues and the number of Foxp3, IL-17a, ROR-γt, CD4 expressing cells which infiltrated the hepatic tissues were determined.

Results

The Th17/Treg cell ratio (P < 0.001) and blood concentrations of IL-17a and IL-23 (P < 0.05) were increased in the BA as compared to the HC group. Expressions of Foxp3, ROR-γt, IL-17a, IL-1β, IL-6 as well as TGF-β1 mRNA and proteins were significantly increased in BA as compared to HC livers (P < 0.01, P < 0.05). High levels of IL-17a/ROR-γt-positive and moderate levels of Foxp3-positive cells infiltrated damaged BA bile ducts and the ratio of FoxP3+ T to CD4+ T cells was significantly lower in BA than in HC samples (P < 0.01).

Conclusion

Cytokine-induced imbalance between Th17 and Treg cells in BA livers may be involved in bile duct damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hartley JL, Davenport M, Kelly DA (2009) Biliary atresia. Lancet 374(9702):1704–1713. doi:10.1016/S0140-6736(09)60946-6

    Article  PubMed  Google Scholar 

  2. Ghoneim EM, Sira MM, Abd Elaziz AM, Khalil FO, Sultan MM, Mahmoud AB (2011) Diagnostic value of hepatic intercellular adhesion molecule-1 expression in Egyptian infants with biliary atresia and other forms of neonatal cholestasis. Hepatol Res 41(8):763–775. doi:10.1111/j.1872-034X.2011.00832.x

    Article  PubMed  CAS  Google Scholar 

  3. Bezerra JA, Tiao G, Ryckman FC, Alonso M, Sabla GE, Shneider B, Sokol RJ, Aronow BJ (2002) Genetic induction of proinflammatory immunity in children with biliary atresia. Lancet 360(9346):1653–1659. doi:10.1016/S0140-6736(02)11603-5

    Article  PubMed  Google Scholar 

  4. Mack CL, Falta MT, Sullivan AK, Karrer F, Sokol RJ, Freed BM, Fontenot AP (2007) Oligoclonal expansions of CD4+ and CD8+ T-cells in the target organ of patients with biliary atresia. Gastroenterology 133(1):278–287. doi:10.1053/j.gastro.2007.04.032

    Article  PubMed  CAS  Google Scholar 

  5. Lu BR, Brindley SM, Tucker RM, Lambert CL, Mack CL (2010) alpha-enolase autoantibodies cross-reactive to viral proteins in a mouse model of biliary atresia. Gastroenterology 139(5):1753–1761. doi:10.1053/j.gastro.2010.07.042

    Article  PubMed  CAS  Google Scholar 

  6. Petersen C, Biermanns D, Kuske M, Schakel K, Meyer-Junghanel L, Mildenberger H (1997) New aspects in a murine model for extrahepatic biliary atresia. J Pediatr Surg 32(8):1190–1195

    Article  PubMed  CAS  Google Scholar 

  7. Mack CL, Tucker RM, Sokol RJ, Karrer FM, Kotzin BL, Whitington PF, Miller SD (2004) Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation. Pediatr Res 56(1):79–87. doi:10.1203/01.PDR.0000130480.51066.FB

    Article  PubMed  CAS  Google Scholar 

  8. Mack CL, Tucker RM, Sokol RJ, Kotzin BL (2005) Armed CD4+ Th1 effector cells and activated macrophages participate in bile duct injury in murine biliary atresia. Clin Immunol 115(2):200–209. doi:10.1016/j.clim.2005.01.012

    Article  PubMed  CAS  Google Scholar 

  9. Miethke AG, Saxena V, Shivakumar P, Sabla GE, Simmons J, Chougnet CA (2010) Post-natal paucity of regulatory T cells and control of NK cell activation in experimental biliary atresia. J Hepatol 52(5):718–726. doi:10.1016/j.jhep.2009.12.027

    Article  PubMed  CAS  Google Scholar 

  10. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132. doi:10.1038/ni1254

    Article  PubMed  CAS  Google Scholar 

  11. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6(11):1133–1141. doi:10.1038/ni1261

    Article  PubMed  CAS  Google Scholar 

  12. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8(9):942–949. doi:10.1038/ni1496

    Article  PubMed  CAS  Google Scholar 

  13. Manel N, Unutmaz D, Littman DR (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 9(6):641–649. doi:10.1038/ni.1610

    Article  PubMed  CAS  Google Scholar 

  14. Iwakura Y, Ishigame H (2006) The IL-23/IL-17 axis in inflammation. J Clin Invest 116(5):1218–1222. doi:10.1172/JCI28508

    Article  PubMed  CAS  Google Scholar 

  15. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238. doi:10.1038/nature04753

    Article  PubMed  CAS  Google Scholar 

  16. Brindley SM, Lanham AM, Karrer FM, Tucker RM, Fontenot AP, Mack CL (2012) Cytomegalovirus-specific T-cell reactivity in biliary atresia at the time of diagnosis is associated with deficits in regulatory T cells. Hepatology 55(4):1130–1138. doi:10.1002/hep.24807

    Article  PubMed  CAS  Google Scholar 

  17. Lages CS, Simmons J, Chougnet CA, Miethke AG (2012) Regulatory T cells control the CD8 adaptive immune response at the time of ductal obstruction in experimental biliary atresia. Hepatology 56(1):219–227. doi:10.1002/hep.25662

    Article  PubMed  CAS  Google Scholar 

  18. Gaffen SL (2008) An overview of IL-17 function and signaling. Cytokine 43(3):402–407. doi:10.1016/j.cyto.2008.07.017

    Article  PubMed  CAS  Google Scholar 

  19. Eastaff-Leung N, Mabarrack N, Barbour A, Cummins A, Barry S (2010) Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. J Clin Immunol 30(1):80–89

    Article  PubMed  CAS  Google Scholar 

  20. Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, Roncarolo MG, Levings MK (2007) Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 19(4):345–354. doi:10.1093/intimm/dxm014

    Article  PubMed  CAS  Google Scholar 

  21. Shen LS, Wang J, Shen DF, Yuan XL, Dong P, Li MX, Xue J, Zhang FM, Ge HL, Xu D (2009) CD4(+)CD25(+)CD127(low/−) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. Clin Immunol 131(1):109–118. doi:10.1016/j.clim.2008.11.010

    Article  PubMed  CAS  Google Scholar 

  22. Klein S, Kretz CC, Krammer PH, Kuhn A (2010) CD127(low/−) and FoxP3(+) expression levels characterize different regulatory T-cell populations in human peripheral blood. J Invest Dermatol 130(2):492–499. doi:10.1038/jid.2009.313

    Article  PubMed  CAS  Google Scholar 

  23. Loong CC, Hsieh HG, Lui WY, Chen A, Lin CY (2002) Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol 197(3):322–332. doi:10.1002/path.1117

    Article  PubMed  CAS  Google Scholar 

  24. Van Kooten C, Boonstra JG, Paape ME, Fossiez F, Banchereau J, Lebecque S, Bruijn JA, De Fijter JW, Van Es LA, Daha MR (1998) Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol 9(8):1526–1534

    PubMed  Google Scholar 

  25. Huang F, Kao CY, Wachi S, Thai P, Ryu J, Wu R (2007) Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1-dependent NF-kappaB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells. J Immunol 179(10):6504–6513 (pii 179/10/6504)

    PubMed  CAS  Google Scholar 

  26. Schmidt-Weber CB, Akdis M, Akdis CA (2007) TH17 cells in the big picture of immunology. J Allergy Clin Immunol 120(2):247–254. doi:10.1016/j.jaci.2007.06.039

    Article  PubMed  CAS  Google Scholar 

  27. Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane-Wit D, Xiao J, Lu Y, Giltiay N, Liu J, Kordula T, Zhang QW, Vallance B, Swaidani S, Aronica M, Tuohy VK, Hamilton T, Li X (2007) The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 8(3):247–256. doi:10.1038/ni1439

    Article  PubMed  CAS  Google Scholar 

  28. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201(2):233–240. doi:10.1084/jem.20041257

    Article  PubMed  CAS  Google Scholar 

  29. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, Cua DJ, Kastelein RA, Rennick D (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116(5):1310–1316. doi:10.1172/JCI21404

    Article  PubMed  CAS  Google Scholar 

  30. Shneider BL, Brown MB, Haber B, Whitington PF, Schwarz K, Squires R, Bezerra J, Shepherd R, Rosenthal P, Hoofnagle JH, Sokol RJ (2006) A multicenter study of the outcome of biliary atresia in the United States, 1997 to 2000. J Pediatr 148(4):467–474

    Article  PubMed  Google Scholar 

  31. Lien TH, Chang MH, Wu JF, Chen HL, Lee HC, Chen AC, Tiao MM, Wu TC, Yang YJ, Lin CC, Lai MW, Hsu HY, Ni YH (2010) Effects of the infant stool color card screening program on 5-year outcome of biliary atresia in Taiwan. Hepatology 53(1):202–208

    Article  PubMed  Google Scholar 

  32. Rong G, Zhou Y, Xiong Y, Zhou L, Geng H, Jiang T, Zhu Y, Lu H, Zhang S, Wang P, Zhang B, Zhong R (2009) Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis: the serum cytokine profile and peripheral cell population. Clin Exp Immunol 156(2):217–225. doi:10.1111/j.1365-2249.2009.03898.x

    Article  PubMed  CAS  Google Scholar 

  33. Yasumi Y, Takikawa Y, Endo R, Suzuki K (2007) Interleukin-17 as a new marker of severity of acute hepatic injury. Hepatol Res 37(4):248–254. doi:10.1111/j.1872-034X.2007.00040.x

    Article  PubMed  CAS  Google Scholar 

  34. Nistala K, Moncrieffe H, Newton KR, Varsani H, Hunter P, Wedderburn LR (2008) Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthr Rheum 58(3):875–887. doi:10.1002/art.23291

    Article  Google Scholar 

  35. Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C, Hafler DA (2009) IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113(18):4240–4249. doi:10.1182/blood-2008-10-183251

    Article  PubMed  CAS  Google Scholar 

  36. Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I (2008) Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112(6):2340–2352. doi:10.1182/blood-2008-01-133967

    Article  PubMed  CAS  Google Scholar 

  37. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, Lecron JC, Kastelein RA, Cua DJ, McClanahan TK, Bowman EP, de Waal Malefyt R (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8(9):950–957. doi:10.1038/ni1497

    Article  PubMed  CAS  Google Scholar 

  38. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, Kuchroo VK, Hafler DA (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454(7202):350–352. doi:10.1038/nature07021

    Article  PubMed  CAS  Google Scholar 

  39. Ogura H, Murakami M, Okuyama Y, Tsuruoka M, Kitabayashi C, Kanamoto M, Nishihara M, Iwakura Y, Hirano T (2008) Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29(4):628–636. doi:10.1016/j.immuni.2008.07.018

    Article  PubMed  CAS  Google Scholar 

  40. Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, Shen Y, Du J, Rubtsov YP, Rudensky AY, Ziegler SF, Littman DR (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453(7192):236–240. doi:10.1038/nature06878

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study received financial support from the National Natural Science Foundation of China (No. 30973137).

Conflict of interest

The authors have no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-tao Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Liu, Yj., Tang, St. et al. Elevated Th17 cells accompanied by decreased regulatory T cells and cytokine environment in infants with biliary atresia. Pediatr Surg Int 29, 1249–1260 (2013). https://doi.org/10.1007/s00383-013-3421-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-013-3421-6

Keywords

Navigation