Skip to main content

Advertisement

Log in

Effects of endostatin and a new drug terpestacin against human neuroblastoma xenograft and cell lines

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

New development in the vascular network is a significant process for the proliferation, as well as metastatic expand, of cancer cells that depends on a sufficient provider of oxygen and nutrients and the removal of waste products. New blood and lymphatic vessels form via step called angiogenesis and lymphangiogenesis. Angiogenesis is controlled by activator and inhibitor of some molecules. So many different proteins have been established as angiogenic activators and inhibitors. Grades of expression of angiogenic factors demonstrate the forcefulness of tumor cells. The advance of angiogenic inhibitors should help to decrease both mortality and morbidity from carcinomas. So many patients have received anti-angiogenic therapy to date. Nevertheless, their notional efficacy and anti-angiogeic treatments have not demonstrated to be useful in terms of long-term survival. There is a crucial need for a new close treatment plan combining anti-angiogenic agents with standard cyto-reductive treatments in the regulation of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580. doi:10.1124/pr.56.4.3

    Article  PubMed  CAS  Google Scholar 

  2. Reynolds LP, Grazul-Bilska AT, Redmer DA (2002) Angiogenesis in the female reproductive organs: pathological implications. Int J Exp Pathol 83(4):151–163

    Article  PubMed  Google Scholar 

  3. Roy Choudhury S, Karmakar S, Banik NL, Ray SK (2012) Targeting angiogenesis for controlling neuroblastoma. J Oncol 2012:782020. doi:10.1155/2012/782020

    Article  PubMed  Google Scholar 

  4. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186. doi:10.1056/NEJM197111182852108

    Article  PubMed  CAS  Google Scholar 

  5. Holmgren A, Bjornstedt M (1995) Thioredoxin and thioredoxin reductase. Methods Enzymol 252:199–208. doi:0076-6879(95)52023-6

    Article  PubMed  CAS  Google Scholar 

  6. Kuroiwa M, Ikeda H, Hongo T, Tsuchida Y, Hirato J, Kaneko Y, Suzuki N, Obana K, Makino SI (2001) Effects of recombinant human endostatin on a human neuroblastoma xenograft. Int J Mol Med 8(4):391–396

    PubMed  CAS  Google Scholar 

  7. Guidi AJ, Fischer L, Harris JR, Schnitt SJ (1994) Microvessel density and distribution in ductal carcinoma in situ of the breast. J Natl Cancer Inst 86(8):614–619

    Article  PubMed  CAS  Google Scholar 

  8. Katzenstein HM, Salwen HR, Nguyen NN, Meitar D, Cohn SL (2001) Antiangiogenic therapy inhibits human neuroblastoma growth. Med Pediatr Oncol 36(1):190–193. doi:10.1002/1096-911X(20010101)36:1<190:AID-MPO1045>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  9. Davidoff AM, Leary MA, Ng CY, Vanin EF (2001) Gene therapy-mediated expression by tumor cells of the angiogenesis inhibitor flk-1 results in inhibition of neuroblastoma growth in vivo. J Pediatr Surg 36(1):30–36. doi:10.1053/jpsu.2001.19998

    Article  PubMed  CAS  Google Scholar 

  10. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934

    PubMed  CAS  Google Scholar 

  11. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70(2):200–214

    Article  CAS  Google Scholar 

  12. Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1(6):409–414. doi:10.1016/j.cmet.2005.05.002

    Article  PubMed  CAS  Google Scholar 

  13. Lin X, David CA, Donnelly JB, Michaelides M, Chandel NS, Huang X, Warrior U, Weinberg F, Tormos KV, Fesik SW, Shen Y (2008) A chemical genomics screen highlights the essential role of mitochondria in HIF-1 regulation. Proc Natl Acad Sci U S A 105(1):174–179. doi:10.1073/pnas.0706585104

    Article  PubMed  CAS  Google Scholar 

  14. Jung HJ, Burm Lee H, Lim CH, Kim CJ, Kwon HJ (2003) Cochlioquinone A1, a new anti-angiogenic agent from Bipolaris zeicola. Bioorg Med Chem 11(22):4743–4747

    Article  PubMed  CAS  Google Scholar 

  15. Park KC, Kim SW, Park JH, Song EH, Yang JW, Chung HJ, Jung HJ, Suh JS, Kwon HJ, Choi SH (2011) Potential anti-cancer activity of N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), a histone deacetylase inhibitor, against breast cancer both in vitro and in vivo. Cancer Sci 102(2):343–350. doi:10.1111/j.1349-7006.2010.01798.x

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki H, Hosokawa Y, Toda H, Nishikimi M, Ozawa T (1988) Cloning and sequencing of a cDNA for human mitochondrial ubiquinone-binding protein of complex III. Biochem Biophys Res Commun 156(2):987–994

    Article  PubMed  CAS  Google Scholar 

  17. Brown R, Strathdee G (2002) Epigenomics and epigenetic therapy of cancer. Trends Mol Med 8(4 Suppl):S43–S48. (pii S1471491402023146)

    Article  PubMed  CAS  Google Scholar 

  18. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1(3):194–202. doi:10.1038/35106079

    Article  PubMed  CAS  Google Scholar 

  19. Liu T, Kuljaca S, Tee A, Marshall GM (2006) Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev 32(3):157–165. doi:10.1016/j.ctrv.2005.12.006

    Article  PubMed  Google Scholar 

  20. Pandolfi PP (2001) Transcription therapy for cancer. Oncogene 20(24):3116–3127. doi:10.1038/sj.onc.1204299

    Article  PubMed  CAS  Google Scholar 

  21. Hoshikawa Y, Kwon HJ, Yoshida M, Horinouchi S, Beppu T (1994) Trichostatin A induces morphological changes and gelsolin expression by inhibiting histone deacetylase in human carcinoma cell lines. Exp Cell Res 214(1):189–197. doi:10.1006/excr.1994.1248

    Article  PubMed  CAS  Google Scholar 

  22. Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SW, Moon EJ, Kim HS, Lee SK, Chung HY, Kim CW, Kim KW (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7(4):437–443. doi:10.1038/86507

    Article  PubMed  Google Scholar 

  23. Warrener R, Beamish H, Burgess A, Waterhouse NJ, Giles N, Fairlie D, Gabrielli B (2003) Tumor cell-selective cytotoxicity by targeting cell cycle checkpoints. FASEB J 17(11):1550–1552. doi:10.1096/fj.02-1003fje

    PubMed  CAS  Google Scholar 

  24. Qian DZ, Wang X, Kachhap SK, Kato Y, Wei Y, Zhang L, Atadja P, Pili R (2004) The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 64(18):6626–6634. doi:10.1158/0008-5472.CAN-04-054064/18/6626

    Article  PubMed  CAS  Google Scholar 

  25. Qian DZ, Ren M, Wei Y, Wang X, van de Geijn F, Rasmussen C, Nakanishi O, Sacchi N, Pili R (2005) In vivo imaging of retinoic acid receptor beta2 transcriptional activation by the histone deacetylase inhibitor MS-275 in retinoid-resistant prostate cancer cells. Prostate 64(1):20–28. doi:10.1002/pros.20209

    Article  PubMed  CAS  Google Scholar 

  26. Kelly WK, Marks PA (2005) Drug insight: histone deacetylase inhibitors—development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol 2(3):150–157. doi:10.1038/ncponc0106

    Article  PubMed  CAS  Google Scholar 

  27. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. doi:10.1038/nm0603-669

    Article  PubMed  CAS  Google Scholar 

  28. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732. doi:10.1038/nrc1187

    Article  PubMed  CAS  Google Scholar 

  29. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3(6):422–433. doi:10.1038/nrc1094

    Article  PubMed  CAS  Google Scholar 

  30. Oikawa T, Onozawa C, Inose M, Sasaki M (1995) Depudecin, a microbial metabolite containing two epoxide groups, exhibits anti-angiogenic activity in vivo. Biol Pharm Bull 18(9):1305–1307

    Article  PubMed  CAS  Google Scholar 

  31. Patani GA, LaVoie EJ (1996) Bioisosterism: a rational approach in drug design. Chem Rev 96(8):3147–3176 cr950066q

    Article  PubMed  CAS  Google Scholar 

  32. Kim DH, Lee J, Kim KN, Kim HJ, Jeung HC, Chung HC, Kwon HJ (2007) Anti-tumor activity of N-hydroxy-7-(2-naphthylthio) heptanomide, a novel histone deacetylase inhibitor. Biochem Biophys Res Commun 356(1):233–238. doi:10.1016/j.bbrc.2007.02.126

    Article  PubMed  CAS  Google Scholar 

  33. Sugawara K, Kurihara H, Negishi M, Saito N, Nakazato Y, Sasaki T, Takeuchi T (2002) Nestin as a marker for proliferative endothelium in gliomas. Lab Invest 82(3):345–351

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hoon Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K.C., Choi, S.H. Effects of endostatin and a new drug terpestacin against human neuroblastoma xenograft and cell lines. Pediatr Surg Int 29, 1327–1340 (2013). https://doi.org/10.1007/s00383-013-3398-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-013-3398-1

Keywords

Navigation