Skip to main content

Advertisement

Log in

C-Kit receptor (CD117) in the porcine urinary tract

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

C-Kit positive interstitial cells of Cajal (ICC) play an important role in the regulation of the smooth muscle motility, acting as internal pacemakers to provide the slow wave activity within various luminal organs. Recently c-Kit-(CD117)-positive interstitial cells (IC) have been shown in the genitourinary tract, but systematic studies on the distribution and density of IC within the urinary tract are still lacking. Therefore the aim of the present study was to analyze systematically the localization and distribution of the c-Kit receptor in the urinary tract of the pig using immunohistochemical and molecular methods. Tissue samples were harvested from the porcine urinary tract including renal calices and pelvis, ureteropelvic junction, proximal, middle and distal ureter, ureteral orifice, fundus, and corpus of the bladder and the internal urethral orifice. Small and large intestine specimen served as controls. Immunohistochemistry (APAAP, IF) was applied on serial frozen sections using four monoclonal and polyclonal antibodies recognizing CD117. Whole mounts of the porcine upper urinary tract were prepared and investigated using conventional and confocal fluorescence microscopy followed by three-dimensional reconstruction. UV-laser microdissection and RT-PCR were applied to confirm the immunohistochemical results. CD117-immunoreactivity labeled bipolar IC and round-shaped mast cells (MC) throughout the adventitia, tunica muscularis and submucosa within the whole porcine urinary tract. While MC were found continuously in all investigated segments, a gradient of bipolar IC was evident. The whole mount preparations gave a detailed cytomorphology of IC within the various layers of the porcine urinary tract. Whole mount preparations revealed closed apposition of bi- and tripolar c-Kit positive IC parallel to the smooth muscle bundles and to veins of the tunica muscularis and adventitia. In the urothelium single CD117-positive interepithelial cells were found. The highest density of CD117-positive cells was found at the ureteropelvic junction, however the differences in between the segments were minimal. Microdissection and RT-PCR confirmed the results uncovered by immunohistochemistry. The ubiquitous distribution of IC and their close relationship to smooth muscle provides strong evidence that IC could contribute to the intrinsic pacemaker activity within the porcine (upper and lower) urinary tract. The role of the interepithelial CD117-positive cells as mechanosensors or as a precursor cell in the regeneration of the urothelium, is conceivable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altdorfer K, Bagaméri G, Donáth T, Fehér E (2002) Nitric oxide synthase immunoreactivity of interstitial cells of Cajal in experimental colitis. Inflamm Res 51(12):569–571

    Article  PubMed  CAS  Google Scholar 

  2. Brading AF (2006) Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function. J Physiol 570(Pt 1):13–22

    PubMed  CAS  Google Scholar 

  3. Brading AF, McCloskey KD (2005) Mechanisms of disease: specialized interstitial cells of the urinary tract—an assessment of current knowledge. Nat Clin Pract Urol 2(11):546–554

    Article  PubMed  Google Scholar 

  4. Constantinou CE (1974) Renal pelvic pacemaker control of ureteral peristaltic rate. Am J Physiol 226(6):1413–1419

    PubMed  CAS  Google Scholar 

  5. Corvera CU, Déry O, McConalogue K, Gamp P, Thoma M, Al-Ani B, Caughey GH, Hollenberg MD, Bunnett NW (1999) Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and -2. J Physiol 517(Pt 3):741–756

    Article  PubMed  CAS  Google Scholar 

  6. Der T, Bercik P, Donnelly G, Jackson T, Berezin I, Collins SM, Huizinga JD (2000) Interstitial cells of cajal and inflammation-induced motor dysfunction in the mouse small intestine. Gastroenterology 119(6):1590–1599

    Google Scholar 

  7. Der-Silaphet T, Malysz J, Hagel S, Arsenault AL, Huizinga JD (1998) Interstitial cells of cajal direct normal propulsive contractile activity in the mouse small intestine. Gastroenterology 114(4):724–736

    Article  PubMed  CAS  Google Scholar 

  8. Dvorak AM, Tepper RI, Weller PF, Morgan ES, Estrella P, Monahan-Earley RA, Galli SJ (1994) Piecemeal degranulation of mast cells in the inflammatory eyelid lesions of interleukin-4 transgenic mice. Evidence of mast cell histamine release in vivo by diamine oxidase-gold enzyme-affinity ultrastructural cytochemistry. Blood 83(12):3600–3612

    PubMed  CAS  Google Scholar 

  9. Edyvane KA, Trussell DC, Jonavicius J, Henwood A, Marshall VR (1992) Presence and regional variation in peptide-containing nerves in the human ureter. J Auton Nerv Syst 39(2):127–137

    Article  PubMed  CAS  Google Scholar 

  10. Gosling JA, Dixon JS (1974) Species variation in the location of upper urinary tract pacemaker cells. Invest Urol 11(5):418–423

    PubMed  CAS  Google Scholar 

  11. Gosling JA, Dixon JS (1971) Morphologic evidence that rhe renal calyx and pelvis control ureteric activity in the rabbit. Am J Anat 130(4):393–408

    Article  PubMed  CAS  Google Scholar 

  12. Hagger R, Gharaie S, Finlayson C, Kumar D (1998) Regional and transmural density of interstitial cells of Cajal in human colon and rectum. Am J Physiol 275(6 Pt 1):G1309–G1316

    PubMed  CAS  Google Scholar 

  13. He CL, Burgart L, Wang L, Pemberton J, Young-Fadok T, Szurszewski J, Farrugia G (2000) Decreased interstitial cell of cajal volume in patients with slow-transit constipation. Gastroenterology 118(1):14–21

    Article  PubMed  CAS  Google Scholar 

  14. Hoyes AD, Barber P, Martin BG (1975) Comparative ultrastructure of ureteric innervation. Cell Tissue Res 160(4):515–524

    Article  PubMed  CAS  Google Scholar 

  15. Huizinga JD, Robinson TL, Thomsen L (2000) The search for the origin of rhythmicity in intestinal contraction; from tissue to single cells. Neurogastroenterol Motil 12(1):3–9

    Article  PubMed  CAS  Google Scholar 

  16. Huizinga JD, Thuneberg L, Klüppel M, Malysz J, Mikkelsen HB, Bernstein A (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373(6512):347–349

    Article  PubMed  CAS  Google Scholar 

  17. Isozaki K, Hirota S, Miyagawa J, Taniguchi M, Shinomura Y, Matsuzawa Y (1997) Deficiency of c-kit+ cells in patients with a myopathic form of chronic idiopathic intestinal pseudo-obstruction. Am J Gastroenterol 92(2):332–334

    PubMed  CAS  Google Scholar 

  18. Isozaki K, Hirota S, Nakama A, Miyagawa J, Shinomura Y, Xu Z, Nomura S, Kitamura Y (1995) Disturbed intestinal movement, bile reflux to the stomach, and deficiency of c-kit-expressing cells in Ws/Ws mutant rats. Gastroenterology 109(2):456–464

    Article  PubMed  CAS  Google Scholar 

  19. Keith IM, Jin J, Saban R (1995) Nerve-mast cell interaction in normal guinea pig urinary bladder. J Comp Neurol 363(1):28–36

    Article  PubMed  CAS  Google Scholar 

  20. Kenny SE, Connell G, Woodward MN, Lloyd DA, Gosden CM, Edgar DH, Vaillant C (1999) Ontogeny of interstitial cells of Cajal in the human intestine. J Pediatr Surg 34(8):1241–1247

    Article  PubMed  CAS  Google Scholar 

  21. Kenny SE, Connell MG, Rintala RJ, Vaillant C, Edgar DH, Lloyd DA (1998) Abnormal colonic interstitial cells of Cajal in children with anorectal malformations. J Pediatr Surg 33(1):130–132

    Article  PubMed  CAS  Google Scholar 

  22. Kim YC, Koh SD, Sanders KM (2002) Voltage-dependent inward currents of interstitial cells of Cajal from murine colon and small intestine. J Physiol 541(Pt 3):797–810

    Article  PubMed  CAS  Google Scholar 

  23. Klemm MF, Exintaris B, Lang RJ (1999) Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract. J Physiol 519(Pt 3):867–884

    Article  PubMed  CAS  Google Scholar 

  24. Komuro T (2006) Structure and organization of interstitial cells of Cajal in the gastrointestinal tract. J Physiol 576:653–658

    Article  PubMed  CAS  Google Scholar 

  25. Lammie A, Drobnjak M, Gerald W, Saad A, Cote R, Cordon-Cardo C (1994) Expression of c-kit and kit ligand proteins in normal human tissues. J Histochem Cytochem 42(11):1417–1425

    PubMed  CAS  Google Scholar 

  26. Linenberger ML, Jacobson FW, Bennett LG, Broudy VC, Martin FH, Abkowitz JL (1995) Stem cell factor production by human marrow stromal fibroblasts. Exp Hematol 23(10):1104–1114

    PubMed  CAS  Google Scholar 

  27. Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa S (1992) Requirement of c-kit for development of intestinal pacemaker system. Development 116(2):369–375

    PubMed  CAS  Google Scholar 

  28. Masumoto K, Suita S, Nada O, Taguchi T, Guo R (1999a) Abnormalities of enteric neurons, intestinal pacemaker cells, and smooth muscle in human intestinal atresia. J Pediatr Surg 34(10):1463–1468

    Article  PubMed  CAS  Google Scholar 

  29. Masumoto K, Suita S, Nada O, Taguchi T, Guo R, Yamanouchi T (1999b) Alterations of the intramural nervous distributions in a chick intestinal atresia model. Pediatr Res 45(1):30–37

    Article  PubMed  CAS  Google Scholar 

  30. Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77(4):1033–1079

    PubMed  CAS  Google Scholar 

  31. Metzger R, Schuster T, Till H, Franke F, Dietz H (2005) Cajal-like cells in the upper urinary tract: comparative study in various species. Pediatr Surg Int 21(3):169–174

    Article  PubMed  Google Scholar 

  32. Metzger R, Schuster T, Till H, Stehr M, Franke F, Dietz H (2004) Cajal-like cells in the human upper urinary tract. J Urol 172(2):769–772

    Article  PubMed  Google Scholar 

  33. Notley RG (1968) Electron microscopy of the upper ureter and the pelvi-ureteric junction. Br J Urol 40(1):37–52

    Article  PubMed  CAS  Google Scholar 

  34. de Paulis A, Minopoli G, Arbustini E, de Crescenzo G, Piaz FD, Pucci P, Russo T, Marone G (1999) Stem cell factor is localized in, released from, and cleaved by human mast cells. J Immunol 163(5):2799–2808

    PubMed  Google Scholar 

  35. Pezzone MA, Watkins SC, Alber SM, King WE, de Groat WC, Chancellor MB, Fraser MO (2003) Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Physiol Renal Physiol 284(5):F925–F929

    PubMed  CAS  Google Scholar 

  36. Reed DE, Barajas-Lopez C, Cottrell G, Velazquez-Rocha S, Dery O, Grady EF, Bunnett NW, Vanner SJ (2003) Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of guinea-pig submucosal neurons. J Physiol 547(Pt 2):531–542

    Article  PubMed  CAS  Google Scholar 

  37. Rich A, Miller SM, Gibbons SJ, Malysz J, Szurszewski JH, Farrugia G (2003) Local presentation of Steel factor increases expression of c-kit immunoreactive interstitial cells of Cajal in culture. Am J Physiol Gastrointest Liver Physiol 284(2):G313–G320

    PubMed  CAS  Google Scholar 

  38. Rolle U, Brylla E, Tillig B (1999) Immunohistochemical detection of neuronal plexuses and nerve cells within the upper urinary tract of pigs. BJU Int 83(9):1045–1049

    Article  PubMed  CAS  Google Scholar 

  39. Rolle U, Yoneda A, Solari V, Nemeth L, Puri P (2002) Abnormalities of C-Kit-positive cellular network in isolated hypoganglionosis. J Pediatr Surg 37(5):709–714

    Article  PubMed  Google Scholar 

  40. Santicioli P, Maggi CA (1998) Myogenic and neurogenic factors in the control of pyeloureteral motility and ureteral peristalsis. Pharmacol Rev 50(4):683–722

    PubMed  CAS  Google Scholar 

  41. Schwentner C, Oswald J, Lunacek A, Fritsch H, Deibl M, Bartsch G, Radmayr C (2005) Loss of interstitial cells of Cajal and gap junction protein connexin 43 at the vesicoureteral junction in children with vesicoureteral reflux. J Urol 174(5):1981–1986

    Article  PubMed  Google Scholar 

  42. Shafik A (1996) Electroureterogram: human study of the electromechanical activity of the ureter. Urology 48(5):696–699

    Article  PubMed  CAS  Google Scholar 

  43. Solari V, Piotrowska AP, Puri P (2003) Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol 170(6 Pt 1):2420–2422

    Article  PubMed  Google Scholar 

  44. Streutker CJ, Huizinga JD, Campbell F, Ho J, Riddell RH (2003) Loss of CD117 (c-kit)- and CD34-positive ICC and associated CD34-positive fibroblasts defines a subpopulation of chronic intestinal pseudo-obstruction. Am J Surg Pathol 27(2):228–235

    Article  PubMed  CAS  Google Scholar 

  45. Thomsen L, Robinson TL, Lee JC, Farraway LA, Hughes MJ, Andrews DW, Huizinga JD (1998) Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med 4(7):848–851

    Article  PubMed  CAS  Google Scholar 

  46. Torihashi S, Ward SM, Sanders KM (1997) Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology 112(1):144–155

    Article  PubMed  CAS  Google Scholar 

  47. Vanderwinden JM, Liu H, Laet MHD, Vanderhaeghen JJ (1996) Study of the interstitial cells of Cajal in infantile hypertrophic pyloric stenosis. Gastroenterology 111(2):279–288

    Article  PubMed  CAS  Google Scholar 

  48. Vodenicharov A, Leiser R, Gulubova M, Vlaykova T (2005) Morphological and immunocytochemical investigations on mast cells in porcine ureter. Anat Histol Embryol 34(6):343–349

    Article  PubMed  CAS  Google Scholar 

  49. Wang X, Berezin I, Mikkelsen HB, Der T, Bercik P, Collins SM, Huizinga JD, Huizina JD (2002) Pathology of interstitial cells of Cajal in relation to inflammation revealed by ultrastructure but not immunohistochemistry. Am J Pathol 160(4):1529–1540

    Google Scholar 

  50. Wang ZQ, Watanabe Y, Toki A, Kohno S, Hasegawa S, Hamazaki M (2000) Involvement of endogenous nitric oxide and c-kit-expressing cells in chronic intestinal pseudo-obstruction. J Pediatr Surg 35(4):539–544

    Article  PubMed  CAS  Google Scholar 

  51. Ward SM, Burns AJ, Torihashi S, Sanders KM (1994) Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 480(Pt 1):91–97

    PubMed  CAS  Google Scholar 

  52. Weiss RM, Tamarkin FJ, Wheeler MA (2006) Pacemaker activity in the upper urinary tract. J Smooth Muscle Res 42(4):103–115

    Article  PubMed  Google Scholar 

  53. Welker P, Grabbe J, Gibbs B, Zuberbier T, Henz BM (1999) Human mast cells produce and differentially express both soluble and membrane-bound stem cell factor. Scand J Immunol 49(5):495–500

    Article  PubMed  CAS  Google Scholar 

  54. Won K, Sanders KM, Ward SM (2005) Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc Natl Acad Sci USA 102(41):14913–14918

    Article  PubMed  CAS  Google Scholar 

  55. Yamataka A, Kato Y, Tibboel D, Murata Y, Sueyoshi N, Fujimoto T, Nishiye H, Miyano T (1995) A lack of intestinal pacemaker (c-kit) in aganglionic bowel of patients with Hirschsprung’s disease. J Pediatr Surg 30(3):441–444

    Article  PubMed  CAS  Google Scholar 

  56. Yamataka A, Ohshiro K, Kobayashi H, Lane GJ, Yamataka T, Fujiwara T, Sunagawa M, Miyano T (1998a) Abnormal distribution of intestinal pacemaker (C-KIT-positive) cells in an infant with chronic idiopathic intestinal pseudoobstruction. J Pediatr Surg 33(6):859–862

    Article  PubMed  CAS  Google Scholar 

  57. Yamataka A, Yamataka T, Lane GJ, Kobayashi H, Sueyoshi N, Miyano T (1998b) Necrotizing enterocolitis and C-KIT. J Pediatr Surg 33(11):1682–1685

    Article  PubMed  CAS  Google Scholar 

  58. Zarate N, Wang XY, Tougas G, Anvari M, Birch D, Mearin F, Malagelada J, Huizinga JD (2006) Intramuscular interstitial cells of Cajal associated with mast cells survive nitrergic nerves in achalasia. Neurogastroenterol Motil 18(7):556–568

    Article  PubMed  CAS  Google Scholar 

  59. Zhang S, Anderson DF, Bradding P, Coward WR, Baddeley SM, MacLeod JD, McGill JI, Church MK, Holgate ST, Roche WR (1998) Human mast cells express stem cell factor. J Pathol 186(1):59–66

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Gabriele Scholz for the expert technical support and the fluorescence microscopy core unit of the Institute for Clinical Sciences (IZKF) University of Leipzig for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Metzger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzger, R., Neugebauer, A., Rolle, U. et al. C-Kit receptor (CD117) in the porcine urinary tract. Pediatr Surg Int 24, 67–76 (2008). https://doi.org/10.1007/s00383-007-2043-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-007-2043-2

Keywords

Navigation