Skip to main content

Advertisement

Log in

Cloud processes associated with past and future climate changes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

 To investigate the cloud response during cold and warm periods, we have performed simulations of the Last Glacial Maximum (LGM-21ky BP) and of double CO2 concentration using the LMD AGCM model. We observe that the thermal characteristics of these two climates are opposite, but the cloud response is more complex and does not display the same symmetry When doubling the CO2, the warming of the troposphere and the cooling of the stratosphere are clearly linked with a reduction in low-level clouds and an increase of high-level clouds associated with relative humidity changes. For the LGM, the cloud response is more complex. In the inter tropical region, we show that the Hadley cell is reinforced during LGM (+20%) whereas it is reduced (−10%) for the double CO2 experiments. The most important feature is that we observe an enlarged Hadley cell for LGM climate which strongly modifies the atmospheric dynamics and water transport. For LGM conditions, the cloud response is then mostly driven by these dynamical changes at low latitudes though at high latitudes the thermal changes explain a large part of the cloud response. Two different versions of the model, using different parametrizations for the precipitation show that cloud feedbacks may act differently for cold and warm climates; and that the cloud response may be more complex that previously expected, but also indicate that the details of these effects are model dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramstein, G., Serafini-Le Treut, Y., Le Treut, H. et al. Cloud processes associated with past and future climate changes. Climate Dynamics 14, 233–247 (1998). https://doi.org/10.1007/s003820050220

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003820050220

Keywords

Navigation