Skip to main content
Log in

Multi-decadal enhancement in the influence of El Niño on the Indian Ocean dipole mode

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

El Niño is an important external factor to trigger a positive Indian Ocean (IO) dipole (pIOD) mode with anomalous sea surface temperature (SST) cooling (warming) over the tropical southeastern (western) IO on the interannual timescale. Based on the observational and reanalyzed datasets during 1948–2020, this study shows a multi-decadal enhancement of the interannual pIOD mode since the early 1990s. Moreover, only the pIOD events concurring with El Niño show such a multi-decadal enhancement, while the independent pIOD events change little, implying a strengthening influence of El Niño on the pIOD mode. The analyses suggest that such a strengthening response of the pIOD mode to El Niño is ascribed to the enhancement of the El Niño-related central Pacific SST warming around the early 1990s. A stronger El Niño-related central Pacific SST warming tends to induce a stronger anomalous Walker circulation adjustment over the tropical Pacific and IO, particularly the low-level anomalous easterlies along the equatorial IO. The stronger anomalous equatorial easterlies could enhance the Bjerknes positive feedback over the tropical IO, resulting in a stronger pIOD mode. In addition, we also find that the strengthening influence of El Niño on the pIOD mode causes a longer duration of the pIOD mode: while the pIOD events concurring with El Niño mature in boreal autumns and tend to sharply terminate in the following early winter before the early 1990s, those tend to persist longer until the early winter (December and January). Our results highlight a multi-decadal enhancement in the effect of El Niño on the pIOD mode since the early 1990s, with implications for the future regional climate prediction under global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The HadISST data are obtained from https://www.metoffice.gov.uk/hadobs/hadisst/. The EN4 subsurface temperature data are downloaded from https://www.metoffice.gov.uk/hadobs/en4/. The NCEP/NCAR and ERA5 atmospheric reanalysis data are gained from https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html and https://doi.org/10.24381/cds.6860a573, respectively. The ORAS4 SSH data are available at https://adprc.soest.hawaii.edu/datadoc/eccmwf_oras4.php.

References

  • Allan RJ, Chambers D, Drosdowsky W, Hendon H, Latif M, Nicholls N, Smith I, Stone RC, Tourre Y (2001) Is there an Indian Ocean dipole and is it independent of the El Niño–Southern Oscillation? CLIVAR Exch 6:18–22

    Google Scholar 

  • Annamalai H, Murtugudde R (2004) Role of the Indian Ocean in regional climate variability. Geophys Monogr Ser 147:213–246

    Google Scholar 

  • Annamalai H, Murtugudde R, Potemra J, Xie SP, Liu P, Wang B (2003) Coupled dynamics over the Indian Ocean: spring initiation of the zonal mode. Deep Sea Res Part II 50:2305–2330

    Google Scholar 

  • Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim 17:3141–3155

    Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res Oceans 112:C11007. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  • Avia LQ, Sofiati I (2018) Analysis of El Niño and IOD phenomenon 2015/2016 and their impact on rainfall variability in Indonesia. IOP Conf Ser: Earth Environ Sci 166:012034. https://doi.org/10.1088/1755-1315/166/1/012034

    Article  Google Scholar 

  • Balmaseda MA, Mogensen K, Weaver AT (2012) Evolution of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161

    Google Scholar 

  • Behera SK, Luo JJ, Masson S, Rao SA, Sakum H, Yamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Clim 19:1688–1705

    Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Google Scholar 

  • Cai W, Rensch VP, Cowan T, Hendon HH (2011) Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J Clim 24:3910–3923

    Google Scholar 

  • Cai W, Yang K, Wu L et al (2021) Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat Clim Change 11:27–32

    Google Scholar 

  • Chen L, Li G (2022) Interdecadal change in the relationship between El Niño in the decaying stage and the central China summer precipitation. Clim Dyn 59:1981–1996

    Google Scholar 

  • Chen L, Li G (2023) Asymmetric effect of ENSO in the decaying stage on the central China July precipitation. Clim Dyn. https://doi.org/10.1007/s00382-023-06731-9

    Article  Google Scholar 

  • Chen Z, Wen Z, Wu R, Zhao P, Cao J (2014) Influence of two types of El Niño on the East Asian climate during boreal summer: a numerical study. Clim Dyn 43:469–481

    Google Scholar 

  • Chen Z, Du Y, Wen Z, Wu R, Xie SP (2019) Evolution of south tropical Indian Ocean warming and the climate impacts following strong El Niño events. J Clim 32:7329–7347

    Google Scholar 

  • Chen L, Li G, Long SM, Gao C, Zhang Z, Lu B (2022) Interdecadal change in the influence of El Niño in the developing stage on the central China summer precipitation. Clim Dyn 59:1265–1282

    Google Scholar 

  • Chowdary JS, Gnanaseelan C (2007) Basin-wide warming of the Indian Ocean during El Niño and Indian Ocean Dipole years. Int J Climatol 27:1421–1438

    Google Scholar 

  • Dogar MM, Kucharski F, Azharuddin S (2017) Study of the global and regional climatic impacts of ENSO magnitude using SPEEDY AGCM. J Earth Syst Sci 126:30. https://doi.org/10.1007/s12040-017-0804-4

    Article  Google Scholar 

  • Dong B, Lu R (2013) Interdecadal enhancement of the Walker circulation over the tropical Pacific in the late 1990s. Advin Atmos Sci 30:247–262

    Google Scholar 

  • Du Y, Xie SP, Huang G, Hu K (2009) Role of air–sea interaction in the long persistence of El Niño-induced north Indian Ocean warming. J Clim 22:2023–2038

    Google Scholar 

  • Du Y, Zhang Y, Zhang LY, Tozuka T, Ng B, Cai W (2020) Thermocline warming induced extreme Indian Ocean Dipole in 2019. Geophys Res Lett 47:e2020GL090079. https://doi.org/10.1029/2020GL090079

    Article  Google Scholar 

  • Francis PA, Gadgil S, Vinayachandran PN (2007) Triggering of the positive Indian Ocean dipole events by severe cyclones over the Bay of Bengal. Tellus A 59:461–475

    Google Scholar 

  • Freund MB, Henley BJ, Karoly DJ, McGregor HV, Abram NJ, Dommenget D (2019) Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat Geosci 12:450–455

    Google Scholar 

  • Gao C, Li G (2023) Asymmetric effect of ENSO on the maritime continent precipitation in decaying summers. Clim Dyn. https://doi.org/10.1007/s00382-023-06716-8

    Article  Google Scholar 

  • Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Oceans 118:6704–6716

    Google Scholar 

  • He C, Wang Y, Li T (2019) Weakened impact of the developing El Niño on tropical Indian Ocean climate variability under global warming. J Clim 32:7265–7279

    Google Scholar 

  • Hersbach H, Bell B, Berrisford P et al (2019) ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) 10:252–266

    Google Scholar 

  • Hong CC, Lu MM, Kanamitsu M (2008) Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J Geophys Res Atmos 113:D08107. https://doi.org/10.1029/2007JD009151

    Article  Google Scholar 

  • Huang B, Shukla J (2007) Mechanisms for the interannual variability in the Tropical Indian Ocean. Part I: the role of remote forcing from the Tropical Pacific. J Clim 20:2917–2936

    Google Scholar 

  • Huang Z, Zhang W, Liu C, Stuecker MF (2022) Extreme Indian Ocean dipole events associated with El Niño and Madden–Julian oscillation. Clim Dyn 59:1953–1968

    Google Scholar 

  • Izumo T, Vialard J, Lengaigne M et al (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3:168–172

    Google Scholar 

  • Jo HS, Ham YG, Kug JS et al (2022) Southern Indian Ocean Dipole as a trigger for Central Pacific El Niño since the 2000s. Nat Commun 13:6965. https://doi.org/10.1038/s41467-022-34721-8

    Article  Google Scholar 

  • Kajtar JB, Santoso A, England MH, Cai W (2016) Tropical climate variability: interactions across the Pacific, Indian, and Atlantic Oceans. Clim Dyn 48:2173–2190

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632

    Google Scholar 

  • Kug JS, Kang IS (2006) Interactive feedback between the Indian Ocean and ENSO. J Clim 19:1784–1801

    Google Scholar 

  • Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Google Scholar 

  • Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys Res Lett 32:L13705. https://doi.org/10.1029/2005GL022738

    Article  Google Scholar 

  • Latif M, Kleeman R, Eckert C (1997) Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. J Clim 10:2221–2239

    Google Scholar 

  • Lau NC, Nath MJ (2004) Coupled GCM simulation of atmosphere ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J Clim 17:245–265

    Google Scholar 

  • Le T, Ha KJ, Bae DH, Kim SH (2020) Causal effects of Indian Ocean Dipole on El Niño-Southern Oscillation during 1950–2014 based on high-resolution models and reanalysis data. Environ Res Lett 15:1040b6. https://doi.org/10.1088/1748-9326/abb96d

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. https://doi.org/10.1029/2010GL044007

    Article  Google Scholar 

  • Li T, Zhang YS, Chang CP, Lu E, Wang D (2002) Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: an OGCM diagnosis. Geophys Res Lett 29:251–254

    Google Scholar 

  • Li G, Gao C, Lu B, Chen H (2021a) Inter-annual variability of spring precipitation over the Indo-China Peninsula and its asymmetric relationship with El Niño-Southern Oscillation. Clim Dyn 56:2651–2665

    Google Scholar 

  • Li G, Gao C, Xu B, Lu B, Chen H, Ma H, Li X (2021b) Strengthening influence of El Niño on the following spring precipitation over the Indo-China Peninsula. J Clim 34:5971–5984

    Google Scholar 

  • Li G, Chen L, Lu B (2023) A physics-based empirical model for the seasonal prediction of the central China July precipitation. Geophys Res Lett 50:e2022GL101463. https://doi.org/10.1029/2022GL101463

    Article  Google Scholar 

  • Lin X, Lu B, Li G, Gao C, Chen L (2023) Asymmetric impacts of El Niño-Southern Oscillation on the winter precipitation over South China: the role of the India-Burma Trough. Clim Dyn. https://doi.org/10.1007/s00382-023-06675-0

    Article  Google Scholar 

  • Liu L, Yang G, Zhao X, Feng L, Han G, Wu Y, Yu W (2017) Why was the Indian Ocean dipole weak in the context of the extreme El Niño in 2015? J Clim 30:4755–4761

    Google Scholar 

  • Liu F, Xing C, Chen L et al (2022) Relative roles of land and ocean cooling in triggering an El Niño following tropical volcanic eruptions. Geophys Res Lett 49:e2022GL100609. https://doi.org/10.1029/2022GL100609

    Article  Google Scholar 

  • Lu B, Ren HL (2020) What caused the extreme Indian Ocean Dipole event in 2019? Geophys Res Lett 47:e2020GL087768. https://doi.org/10.1029/2020GL087768

    Article  Google Scholar 

  • Lu B, Ren HL, Eade R, Andrews M (2018a) Indian Ocean SST modes and their impacts as simulated in BCC_CSM1. 1 (m) and HadGEM3. Adv Atmos Sci 35:1035–1048

    Google Scholar 

  • Lu B, Ren HL, Scaife AA, Wu J et al (2018b) An extreme negative Indian Ocean Dipole event in 2016: dynamics and predictability. Clim Dyn 51:89–100

    Google Scholar 

  • Luo JJ, Zhang R, Behera SK, Masumoto Y, Jin FF, Lukas R, Yamagata T (2010) Interaction between El Niño and Extreme Indian Ocean Dipole. J Clim 23:726–742

    Google Scholar 

  • Marchant R, Mumbi C, Behera S, Yamagata T (2007) The Indian Ocean dipole—the unsung driver of climatic variability in East Africa. Afr J Ecol 45:4–16

    Google Scholar 

  • McMonigal K, Larson SM (2022) ENSO explains the link between Indian Ocean Dipole and meridional ocean heat transport. Geophys Res Lett 49:e2021GL095796. https://doi.org/10.1029/2021GL095796

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745

    Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. https://doi.org/10.1029/2011GL048275

    Article  Google Scholar 

  • Meyers G, McIntosh P, Pigot L, Pook M (2007) The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J Clim 20:2872–2880

    Google Scholar 

  • Nigam S, Shen HS (1993) Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS Observations. J Clim 6:657–676

    Google Scholar 

  • Ohba M, Ueda H (2005) Basin-wide warming in the equatorial Indian Ocean associated with El Niño. Sola 1:89–92

    Google Scholar 

  • Paek H, Yu JY, Zheng F, Lu MM (2019) Impacts of ENSO diversity on the western Pacific and North Pacific subtropical highs during boreal summer. Clim Dyn 52:7153–7172

    Google Scholar 

  • Rao SA, Behera SK, Masumoto Y, Yamagata T (2002) Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep-Sea Res Part II 49:1549–1572

    Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Google Scholar 

  • Ratna SB, Cherchi A, Osborn TJ, Joshi M, Uppara U (2021) The extreme positive Indian Ocean dipole of 2019 and associated Indian summer monsoon rainfall response. Geophys Res Lett 48:e2020GL091497. https://doi.org/10.1029/2020GL091497

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Roxy M, Gualdi S, Drbohlav HKL, Navarra A (2010) Seasonality in the relationship between El Niño and Indian Ocean dipole. Clim Dyn 37:221–236

    Google Scholar 

  • Saji NH, Yamagata T (2003) Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J Clim 16:2735–2751

    Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Shiozaki M, Enomoto T, Takaya K (2021) Disparate midlatitude responses to the Eastern Pacific El Niño. J Clim 34:773–786

    Google Scholar 

  • Sohn BJ, Yeh SW, Schmetz J, Song HJ (2013) Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Clim Dyn 40:1721–1732

    Google Scholar 

  • Song G, Ren RC (2022) Linking the subsurface Indian Ocean Dipole to central Pacific ENSO. Geophys Res Lett 49:e2021GL096263. https://doi.org/10.1029/2021GL096263

    Article  Google Scholar 

  • Stuecker MF, Timmermann A, Jin FF et al (2017) Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophys Res Lett 44:2481–2492

    Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701

    Google Scholar 

  • Vinayachandran PN, Francis PA, Rao SA (2009) Indian Ocean dipole: processes and impacts. Curr Trends Sci 46:569–589

    Google Scholar 

  • Wang H, Kumar A, Murtugudde R, Narapusetty B, Seip KL (2019) Covariations between the Indian Ocean dipole and ENSO: A modeling study. Clim Dyn 53:5743–5761

    Google Scholar 

  • Watanabe M, Jin FF (2002) Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys Res Lett 29:1478. https://doi.org/10.1029/2001GL014318

    Article  Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360

    Google Scholar 

  • Wu X, Li G, Jiang W, Long SM, Lu B (2021) Asymmetric relationship between ENSO and the tropical Indian Ocean summer SST anomalies. J Clim 34:5955–5969

    Google Scholar 

  • Xie SP, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of South Indian Ocean climate variability. J Clim 15:864–878

    Google Scholar 

  • Xu B, Li G, Gao C, Yan H, Wang Z, Li Y, Zhu S (2021) Asymmetric effect of El Niño-Southern Oscillation on the following spring precipitation over South China. Atmosphere 12:391. https://doi.org/10.3390/atmos12030391

    Article  Google Scholar 

  • Yang Y, Xie SP, Wu L, Kosaka Y, Lau NC, Vecchi GA (2015) Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability. J Clim 28:8021–8036

    Google Scholar 

  • Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514

    Google Scholar 

  • Yu JY, Lau KM (2004) Contrasting Indian Ocean SST variability with and without ENSO influence: a coupled atmosphere-ocean study. Meteorol Atmos Phys 90:179–191

    Google Scholar 

  • Yu JY, Lu MM, Kim ST (2012) A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ Res Lett 7:034025. https://doi.org/10.1088/1748-9326/7/3/034025

    Article  Google Scholar 

  • Yue Z, Zhou W, Li T (2021) Impact of the Indian Ocean Dipole on evolution of the subsequent ENSO: relative roles of dynamic and thermodynamic processes. J Clim 34:3591–3607

    Google Scholar 

  • Zhang Z, Li G (2023) Strengthening effect of El Niño on the following spring Indian Ocean warming with implications for the seasonal prediction of the Asian summer monsoons. Environ Res Commun 5:041006

    Google Scholar 

  • Zhang W, Wang Y, Jin FF, Stuecker MF, Turner AG (2015) Impact of different El Niño types on the El Niño/IOD relationship. Geophys Res Lett 42:8570–8576

    Google Scholar 

  • Zhang L, Han W, Hu ZZ (2021) Interbasin and multiple-time-scale interactions in generating the 2019 extreme Indian Ocean dipole. J Clim 34:4553–4566

    Google Scholar 

  • Zhang M, Jin D, Wang X, Chen L, Luo J, Wang Z (2022a) Seasonal transition of precedent Indian Ocean basin mode and subsequent Indian Ocean Dipole without El Niño-Southern Oscillation impact. Int J Climatol 42:9023–9031

    Google Scholar 

  • Zhang L, Shi RZ, Fraedrich K, Zhu XH (2022b) Enhanced joint effects of ENSO and IOD on Southeast China winter precipitation after 1980s. Clim Dyn 58:277–292

    Google Scholar 

  • Zhao S, Jin FF, Stuecker MF (2019) Improved predictability of the Indian Ocean Dipole using seasonally modulated ENSO forcing forecasts. Geophys Res Lett 46:9980–9990

    Google Scholar 

  • Zhao X, Yang G, Yuan D, Zhang Y (2022) Linking the tropical Indian Ocean basin mode to the central-Pacific type of ENSO: observations and CMIP5 reproduction. Clim Dyn. https://doi.org/10.1007/s00382-022-06387-x

    Article  Google Scholar 

  • Zhong A, Hendon HH, Alves O (2005) Indian Ocean variability and its association with ENSO in a global coupled model. J Clim 18:3634–3649

    Google Scholar 

  • Zhou ZQ, Xie SP, Zhang R (2021) Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc Natl Acad Sci USA 118:e2022255118. https://doi.org/10.1073/pnas.2022255118

    Article  Google Scholar 

  • Zhu J, Huang B, Kumar A, Kinter JL III (2015) Seasonality in prediction skill and predictable pattern of tropical Indian Ocean SST. J Clim 28:7962–7984

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Met Office Hadley Centre, the National Ocean and Atmosphere Administration (NOAA), and the ECMWF for providing the data products used in this study.

Funding

This work is supported by the National Natural Science Foundation of China (41831175) and the Key Scientific and Technological Project of the Ministry of Water Resources, P. R. China (SKS-2022001).

Author information

Authors and Affiliations

Authors

Contributions

GL conceptualized the study. ZZ performed the analysis. ZZ and GL wrote the manuscript.

Corresponding author

Correspondence to Gen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, G. Multi-decadal enhancement in the influence of El Niño on the Indian Ocean dipole mode. Clim Dyn 61, 5331–5347 (2023). https://doi.org/10.1007/s00382-023-06858-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-023-06858-9

Keywords

Navigation