Skip to main content

Advertisement

Log in

Impact of individual and combined influence of large-scale climatic oscillations on Indian summer monsoon rainfall extremes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The occurrence of extreme precipitation events during Indian Summer Monsoon Rainfall (ISMR) has increased significantly in recent decades. Natural spatio-temporal variability of extreme precipitation events in India has been linked to various climatic variables like El Niño Southern Oscillation (ENSO), Equatorial Indian Ocean Oscillation (EQUINOO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). In this study, extreme precipitation indices are used to characterize the ISMR extremes and possible individual and coupled association with climatic variables identified using wavelet analysis. Region-based analysis revealed that ENSO, EQUINOO, PDO, and AMO influence extreme precipitation events on spatio-temporal scales. Variability of the duration of extreme precipitation events strongly depends on the ENSO at interannual scale compared to the other climate variables whereas, total precipitation greater than 95th percentile and maximum consecutive 5-day precipitation values were significantly coherent on inter-decadal scale with ENSO, EQUINOO, and PDO. It is also found that the climate variables together cause variability in ISMR extremes, particularly AMO-ENSO-EQUINOO and AMO-ENSO-PDO combinations explain the variability better than any other combination. An increase in the number of climate variables did not improve the coherence, since these climatic variables are correlated with each other. Further, the decomposition of wavelets at different scales shows that more than half of the grid points considered were significant at interdecadal and multidecadal scales even though they are designated with different time scales. This indicates that the non-stationary behavior of the ISMR extremes is directly linked to the climatic variables at higher scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adamowski K, Prokoph A, Adamowski J (2009) Development of a new method of wavelet-aided trend detection and estimation. Hydrol Process Int J 23(18):2686–2696

    Article  Google Scholar 

  • Aguilar E, Peterson TC, Obando PR, Frutos R, Retana JA, Solera M, Mayorga R (2005) Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J Geophys Res 110:D23107. https://doi.org/10.1029/2005JD006119

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank, AMG, Vazquez‐Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. https://doi.org/10.1029/2005JD006290

  • Alriah MAA, Bi S, Shahid S, Nkunzimana A, Ayugi B, Ali A, Elameen AM (2021) Summer monsoon rainfall variations and its association with atmospheric circulations over Sudan. J Atmos Solar Terr Phys 225:105751

    Article  Google Scholar 

  • An D, Du Y, Berndtsson R, Niu Z, Zhang L, Yuan F. (2020) Evidence of climate shift for temperature and precipitation extremes across Gansu Province in China. Theor Appl Climatol 139(3-4):1137–1149. https://doi.org/10.1007/s00704-019-03041-1

    Article  Google Scholar 

  • Anctil F, Coulibaly P (2004) Wavelet analysis of the interannual variability in southern Québec streamflow. J Clim 17(1):163–173

    Article  Google Scholar 

  • Atiah WA, Tsidu GM, Amekudzi LK, Yorke C (2020) Trends and interannual variability of extreme rainfall indices over Ghana, West Africa. Theor Appl Climatol 140(3):1393–1407

  • Beaufort L, Grelaud M (2017) A 2700-year record of ENSO and PDO variability from the Californian margin based on coccolithophore assemblages and calcification. Prog Earth Planet Sci 4(1):1–13

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (methodol) 57(1):289–300

    Google Scholar 

  • Chang X, Wang B, Yan Y, Hao Y, Zhang M (2019) Characterizing effects of monsoons and climate teleconnections on precipitation in China using wavelet coherence and global coherence. Clim Dyn 52(9):5213–5228

    Article  Google Scholar 

  • Charlotte BV, Simon EK, George G, Yesodharan S, Ruchith RD (2012) Intra-Seasonal Oscillation of North East Monsoon over Southern Peninsular India—An Investigation. Internat J Sci Res Publ 2(8):1–22

  • Curtis S, Salahuddin A, Adler RF, Huffman GJ, Gu G, Hong Y (2007) Precipitation extremes estimated by GPCP and TRMM: ENSO relationships. J Hydrometeorol 8(4):678–689

    Article  Google Scholar 

  • Dhar ON, Nandargi S (2003) Hydrometeorological aspects of floods in India. Nat Hazards 28(1):1–33

    Article  Google Scholar 

  • Ding Z, Lu R, Wang Y (2019) Spatiotemporal variations in extreme precipitation and their potential driving factors in non-monsoon regions of China during 1961–2017. Environ Res Lett 14(2):024005

    Article  Google Scholar 

  • Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Willett KM, Aguilar E, Brunet M, Caesar J, Hewitson B, Jack C, Klein Tank AMG, Kruger AC, Marengo J, Peterson TC, Renom M, Oria Rojas C, Rusticucci M, Salinger J, Elrayah AS, Sekele SS, Srivastava AK, Trewin B, Villarroel C, Vincent LA, Zhai P, Zhang X, Kitching S (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res Atmos 118(5):2098–2118

    Article  Google Scholar 

  • Duan W, He B, Takara K, Luo P, Hu M, Alias NE, Nover D (2015) Changes of precipitation amounts and extremes over Japan between 1901 and 2012 and their connection to climate indices. Clim Dyn 45(7):2273–2292

    Article  Google Scholar 

  • Dutta R, Maity R (2018) Temporal evolution of hydroclimatic teleconnection and a time-varying model for long-lead prediction of Indian summer monsoon rainfall. Sci Rep 8(1):1–10

    Article  Google Scholar 

  • Dutta R, Maity R (2020) Spatial variation in long-lead predictability of summer monsoon rainfall using a time-varying model and global climatic indices. Int J Climatol 40(14):5925–5940

    Article  Google Scholar 

  • Fischer EM, Knutti R (2014) Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys Res Lett 41(2):547–554

    Article  Google Scholar 

  • Gadgil S, Vinayachandran PN, Francis PA, Gadgil S (2004) Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys Res Lett 31:(12)

  • Gao T, Xu Y, Wang H J, Sun Q, Xie L, Cao, F (2022) Combined impacts of climate variability modes on seasonal precipitation extremes over China. Water Resour Manage 36:2411–2431

  • Goly A, Teegavarap RS (2014) Individual and coupled influences of AMO and ENSO on regional precipitation characteristics and extremes. Water Resour Res 50(6):4686–4709

    Article  Google Scholar 

  • Goswami BB, Mukhopadhyay P, Mahanta R, Goswami BN (2010) Multiscale interaction with topography and extreme rainfall events in the northeast Indian region. J Geophys Res 115:D12114. https://doi.org/10.1029/2009JD012275

  • Grinsted A, Moore J, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5/6):561–566

    Article  Google Scholar 

  • Grossmann A, Morlet J (1984) Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15(4):723–736

  • Hrudya PH, Varikoden H, Vishnu R, (2020) A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD. Meteorol Atmos Phys 133:1–14 (2021). https://doi.org/10.1007/s00703-020-00734-5

  • Hu W, Si BC (2016) Technical note: Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences. Hydrol Earth Syst Sci 20:3183–3191. https://doi.org/10.5194/hess-20-3183-2016

    Article  Google Scholar 

  • Hu Q, Woodruff CM, Mudrick SE (1998) Interdecadal variations of annual precipitation in the central United States. Bull Am Meteor Soc 79(2):221–230

    Article  Google Scholar 

  • Hu W, Si BC, Biswas A, Chau HW (2017) Temporally stable patterns but seasonal dependent controls of soil water content: Evidence from wavelet analyses. Hydrol Process 31(21):3697–3707

    Article  Google Scholar 

  • Ivanov M, Warrach-Sagi K, Wulfmeyer V (2018) Field significance of performance measures in the context of regional climate model evaluation. Part 2: precipitation. Theor Appl Climatol 132(1):239–261

    Article  Google Scholar 

  • Jha S, Das J, Goyal MK (2021) Low-frequency global-scale modes and its influence on rainfall extremes over India: nonstationary and uncertainty analysis. Int J Climatol 41(3):1873–1888

    Article  Google Scholar 

  • Jiang R, Wang Y, Xie J, Zhao Y, Li F, Wang X (2019) Assessment of extreme precipitation events and their teleconnections to El Niño Southern Oscillation, a case study in the Wei River Basin of China. Atmos Res 218:372–384

    Article  Google Scholar 

  • Jiang R, Cao R, Lu XX, Xie J, Zhao Y, Li F (2020) Quantifying precipitation extremes and their relationships with large-scale climate oscillations in a tropical country, Singapore: 1980–2018. Singap J Trop Geogr 41(3):384–412

    Google Scholar 

  • Khadgarai S, Kumar V, Pradhan PK (2021) The connection between extreme precipitation variability over monsoon Asia and large-scale circulation patterns. Atmosphere 12(11):1492

    Article  Google Scholar 

  • Kripalani RH, Kulkarni A (1997) Rainfall variability over South‒east Asia—connections with Indian monsoon and ENSO extremes: new perspectives. Int J Climatol: J Roy Meteorol Soc 17(11):1115–1168

  • Kumar V, Jain SK, Singh Y (2010) Analysis of long-term rainfall trends in India. Hydrol Sci J 55(4):484–496. https://doi.org/10.1080/02626667.2010.481373

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284(5423):2156–2159

    Article  Google Scholar 

  • Lestari S, King A, Vincent C, Karoly D, Protat A (2019) Seasonal dependence of rainfall extremes in and around Jakarta. Indonesia Weather Clim Extremes 24:100202

    Article  Google Scholar 

  • Li HJ, Gao JE, Zhang HC, Zhang YX, Zhang YY (2017) Response of extreme precipitation to solar activity and El nino events in typical regions of the loess plateau. Adv Meteorol 2017:1–9. https://doi.org/10.1155/2017/9823865

    Article  Google Scholar 

  • Li W, Zhai P, Cai J (2011) Research on the relationship of ENSO and the frequency of extreme precipitation events in China. Adv Clim Chang Res 2(2):101–107

    Article  Google Scholar 

  • Li P, Yu Z, Jiang P, Wu C (2021) Spatiotemporal characteristics of regional extreme precipitation in Yangtze River basin. J Hydrol 603:126910

    Article  Google Scholar 

  • Limsakul A, Singhruck P (2016) Long-term trends and variability of total and extreme precipitation in Thailand. Atmos Res 169:301–317

    Article  Google Scholar 

  • Liu S, Huang S, Huang Q, Xie Y, Leng G, Luan J, Li X (2017) Identification of the non-stationarity of extreme precipitation events and correlations with large-scale ocean-atmospheric circulation patterns: a case study in the Wei River Basin, China. J Hydrol 548:184–195

    Article  Google Scholar 

  • Maity R, Nagesh Kumar D, (2006) Bayesian dynamic modeling for monthly Indian summer monsoon rainfall using El Niño–Southern Oscillation (ENSO) and Equatorial Indian Ocean Oscillation (EQUINOO). J Geophys Res 111(D7):D07104. https://doi.org/10.1029/2005JD006539

    Article  Google Scholar 

  • Malik A, Brönnimann S, Stickler A, Raible CC, Muthers S, Anet J, Rozanov E, Schmutz W (2017) Decadal to multi-decadal scale variability of Indian summer monsoon rainfall in the coupled ocean-atmosphere-chemistry climate model SOCOL-MPIOM. Clim Dyn 49(9):3551–3572

    Article  Google Scholar 

  • Markovic ́D, Koch, M (2005) Wavelet and scaling analysis of monthly precipitation extremes in Germany in the 20thcentury: Interannual to interdecadal oscillations and the North Atlantic Oscillation influence. Water Resour Res 41:W09420. https://doi.org/10.1029/2004WR003843

  • Martel JL, Mailhot A, Brissette F, Caya D (2018) Role of natural climate variability in the detection of anthropogenic climate change signal for mean and extreme precipitation at local and regional scales. J Clim 31(11):4241–4263

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314(5806):1740–1745

    Article  Google Scholar 

  • Mihanović H, Orlić M, Pasarić Z (2009) Diurnal thermocline oscillations driven by tidal flow around an island in the Middle Adriatic. J Mar Syst 78:S157–S168

    Article  Google Scholar 

  • Mitra S, Srivastava P, Singh S, Yates D (2014) Effect of ENSO-induced climate variability on groundwater levels in the lower Apalachicola–Chattahoochee–Flint River Basin. Trans ASABE 57(5):1393–1403

    Google Scholar 

  • Naidu PD, Ganeshram R, Bollasina MA, Panmei C, Nürnberg D, Donges JF (2020) Coherent response of the Indian Monsoon Rainfall to Atlantic Multi-decadal Variability over the last 2000 years. Sci Rep 10(1):1–11

    Article  Google Scholar 

  • Ng EKW, Chan JCL (2012) Geophysical applications of partial wavelet coherence and multiple wavelet coherence. J Atmos Oceanic Technol 29(12):1845–1853. https://doi.org/10.1175/JTECH-D-12-00056.1

    Article  Google Scholar 

  • Nikumbh AC, Chakraborty A, Bhat GS (2019) Recent spatial aggregation tendency of rainfall extremes over India. Sci Rep 9(1):1–7

    Article  Google Scholar 

  • Oza M, Kishtawal CM (2014) Spatial analysis of Indian summer monsoon rainfall. J Geomatics 8(1):41–47

    Google Scholar 

  • Pai DS, Latha S, Rajeevan M, Sreejith OP, Satbhai NS, Mukhopadhyay B (2014) Development of a new high spatial resolution (0.25° × 0.25°) Long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. MAUSAM, 65, 1(January 2014), pp1–18

  • Pant GB, Parthasarathy SB (1981) Some aspects of an association between the southern oscillation and indian summer monsoon. Einige Gesichtspunkte über eine Verbindung zwischen der südlichen Oszillation und dem indischen Sommermonsun. Arch Meteorol Geophys Bioclimatol B 29(3):245–252. https://doi.org/10.1007/BF02263246

    Article  Google Scholar 

  • Qiu D, Wu C, Mu X, Zhao G, Gao, P (2022) Changes in extreme precipitation in the Wei River Basin of China during 1957–2019 and potential driving factors. Theor Appl Climatol 149:915–929. https://doi.org/10.1007/s00704-022-04101-9

  • Rathinasamy M, Agarwal A, Sivakumar B, Marwan N, Kurths J (2019) Wavelet analysis of precipitation extremes over India and teleconnections to climate indices. Stoch Env Res Risk Assess 33(11):2053–2069

    Article  Google Scholar 

  • Reason CJC (1992) On the effect of ENSO precipitation anomalies in a global ocean GCM. Clim Dyn 8(1):39–47

    Article  Google Scholar 

  • Revadekar JV, Kulkarni A (2008) The El Nino-Southern Oscillation and winter precipitation extremes over India. Int J Climatol J R Meteorol Soc 28(11):1445–1452

    Article  Google Scholar 

  • Rohini P, Rajeevan M, Srivastava AK (2016) On the variability and increasing trends of heat waves over India. Sci Rep 6(1):1–9

    Article  Google Scholar 

  • Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, Terray P, Rajeevan M (2017) A threefold rise in widespread extreme rain events over central India. Nat Commun 8(1):1–11

    Article  Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp 109–230

  • Sifuzzaman M, Islam MR, Ali MZ (2009) Application of wavelet transform and its advantages compared to Fourier transform. J Phys Sci 13:121–134

  • Singh S, Srivastava P, Abebe A, Mitra S (2015) Baseflow response to climate variability induced droughts in the Apalachicola–Chattahoochee–Flint River Basin, USA. J Hydrol 528:550–561

    Article  Google Scholar 

  • Singh S, Abebe A, Srivastava P (2018) Evaluation of Nonparametric and Parametric Statistical Procedures for Modeling and Prediction of Cluster-Correlated Hydroclimatic Data. Water Resour Res 54(9):6948–6964

    Article  Google Scholar 

  • Singh S, Abebe A, Srivastava P, Chaubey I (2021) Effect of ENSO modulation by decadal and multi-decadal climatic oscillations on contiguous United States streamflows. J Hydrol Reg Stud 36:100876

    Article  Google Scholar 

  • Song X, Zhang C, Zhang J, Zou X, Mo Y, Tian Y (2020) Potential linkages of precipitation extremes in Beijing–Tianjin–Hebei region, China, with large-scale climate patterns using wavelet-based approaches. Theoret Appl Climatol 141:1251–1269

    Article  Google Scholar 

  • Sun X, Renard B, Thyer M, Westra S, Lang M (2015) A global analysis of the asymmetric effect of ENSO on extreme precipitation. J Hydrol 530:51–65

    Article  Google Scholar 

  • Sun Q, Miao C, Qiao Y, Duan Q (2017) The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale. Clim Dyn 49(11):4281–4292

    Article  Google Scholar 

  • Sze JS, Lee JSH (2019) Evaluating the social and environmental factors behind the 2015 extreme fire event in Sumatra. Indonesia Environ Res Lett 14(1):015001

    Article  Google Scholar 

  • Tabari H, Willems P (2018) Lagged influence of Atlantic and Pacific climate patterns on European extreme precipitation. Sci Rep 8(1):1–10

    Article  Google Scholar 

  • Tan X, Gan TY, Shao D (2016) Wavelet analysis of precipitation extremes over Canadian ecoregions and teleconnections to large-scale climate anomalies. J Geophys Res Atmos 121:14469–14486. https://doi.org/10.1002/2016JD025533

    Article  Google Scholar 

  • Tan X, Gan TY, Shao D (2017) Effects of persistence and large-scale climate anomalies on trends and change points in extreme precipitation of Canada. J Hydrol 550:453–465

    Article  Google Scholar 

  • Taye MT, Willems P, Block P (2015) Implications of climate change on hydrological extremes in the Blue Nile basin: a review. J Hydrol Reg Stud 4:280–293

    Article  Google Scholar 

  • Tedeschi RG, Grimm AM, Cavalcanti IF (2015) Influence of Central and East ENSO on extreme events of precipitation in South America during austral spring and summer. Int J Climatol 35(8):2045–2064

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79(1):61–78

    Article  Google Scholar 

  • van der Wiel K, Bintanja R (2021) Contribution of climatic changes in mean and variability to monthly temperature and precipitation extremes. Commun Earth Environ 2(1):1–11

    Article  Google Scholar 

  • Vishnu S, Francis PA, Ramakrishna SSVS, Shenoi SSC (2019) On the relationship between the Indian summer monsoon rainfall and the EQUINOO in the CFSv2. Clim Dyn 52(1):1263–1281

    Article  Google Scholar 

  • Wilks DS (2006) On “field significance” and the false discovery rate. J Appl Meteorol Climatol 45(9):1181–1189

    Article  Google Scholar 

  • Xiao M, Zhanga Q, Singh VP (2016) Spatiotemporal variations of extreme precipitation regimes during 1961–2010 and possible teleconnections with climate indices across China. Int J Climatol. https://doi.org/10.1002/joc.4719

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge funding provided by the Science and Engineering Research Board (SERB), India for this study.

Funding

This work is supported by the Science and Engineering Research Board (SERB), India (award number: SRG/2019/000650).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Athira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 26845 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athira, K., Singh, S. & Abebe, A. Impact of individual and combined influence of large-scale climatic oscillations on Indian summer monsoon rainfall extremes. Clim Dyn 60, 2957–2981 (2023). https://doi.org/10.1007/s00382-022-06477-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06477-w

Keywords

Navigation