Skip to main content

Advertisement

Log in

Interdecadal wind stress variability over the tropical Pacific causes ENSO diversity in an intermediate coupled model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 07 September 2022

This article has been updated

Abstract

The role of interdecadal wind stress variability in the genesis of ENSO diversity is examined by using an intermediate coupled model (ICM) in the tropical Pacific; two types of experiments are performed, one with the original ICM, and the other with interdecadal wind stress (\({\uptau }_{interde}\)) effect being explicitly represented. The \({\uptau }_{interde}\) component is derived from NCEP/NCAR reanalysis dataset as follows. First, the ensemble empirical mode decomposition (EEMD) is used to extract the interdecadal component of wind stress anomalies on about a 10–40 yr timescale. Next, an idealized interdecadal cycle of \({\uptau }_{interde}\) is reconstructed by a principal oscillation pattern (POP) analysis based on the EEMD-extracted interdecadal wind component. A 110-yr model integration is then performed by explicitly incorporating the reconstructed \({\uptau }_{interde}\) cycle into the ICM. Compared with the regular interannual oscillation in the original ICM, the simulated ENSO events become highly irregular with interdecadal variations in the amplitude and asymmetry when the \({\uptau }_{interde}\) effect is included. Especially, the model reproduces two types of El Niño with different spatial distribution and temporal evolution of SST anomalies, namely Eastern-Pacific (EP) and Central-Pacific (CP) types. Further attribution analyses are performed to understand the modulating effects of \({\uptau }_{interde}\) in the tropical Pacific using the ocean component of the ICM, forced by the added \({\uptau }_{interde}\) effect. Two different roles of the Interdecadal Pacific Oscillation (IPO) in modulating different types of El Niño are illustrated. On the one hand, the warm phase of IPO favors for the emergence of EP-El Niño events, in association with the initial warming signals occurring in the eastern equatorial Pacific, which are absent in the original ICM. On the other hand, the cold phase of IPO tends to shift the El Niño (i.e., the single type of El Niño in the original ICM) to an CP type, with which the SST anomalies propagate eastward along the equator but cannot extend into the eastern boundary. This simple modeling study highlights the significant contributions of interdecadal wind variability to the genesis of ENSO irregularity and diversity theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets used in this study are public available. The NCEP/NCAR reanalysis dataset can be obtained at https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.derived.surfaceflux.html. The ERSSTv5 can be obtained at https://www.ncei.noaa.gov/products/extended-reconstructed-sst.

Change history

References

  • Ashok K, Behera SK, Rao SA, Weng HY, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007

    Article  Google Scholar 

  • Barnett TP, Pierce DW, Latif M, Dommenget D, Saravanan R (1999) Interdecadal interactions between the tropics and midlatitudes in the Pacific basin. Geophys Res Lett 26:615–618

    Article  Google Scholar 

  • Borlace S, Cai W, Santoso A (2013) Multidecadal ENSO amplitude variability in a 1000-yr simulation of a coupled global climate model: Implications for observed ENSO variability. J Clim 26:9399–9407

    Article  Google Scholar 

  • Cai W, Borlace S, Lengaigne M et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Clim Change 4:111–116

    Article  Google Scholar 

  • Cai W, Wang G, Santoso A et al (2015) Increasing frequency of extreme La Niña events due to greenhouse warming. Nature Clim Change 5:132–137

    Article  Google Scholar 

  • Cai W, Santoso A, Collins M et al (2021) Changing El Niño-Southern Oscillation in a warming climate. Nature Reviews Earth & Environment 2:629–644. https://doi.org/10.1038/s43017-021-00199-z

    Article  Google Scholar 

  • Capotondi A (2013) ENSO diversity in the NCAR CCSM4 climate model. J Geophys Res Oceans 118:4755–4770

    Article  Google Scholar 

  • Capotondi A, Wittenberg AT, Newman M et al (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96:921–938

    Article  Google Scholar 

  • Chen M, Li T (2021) ENSO evolution asymmetry: EP versus CP El Niño. Clim Dyn 56:1–11

    Article  Google Scholar 

  • Chen D, Lian T, Fu C et al (2015) Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci 8:339–345

    Article  Google Scholar 

  • Chiang J, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17:4143–4158

    Article  Google Scholar 

  • Choi J, An SI, Dewitte B, Hsieh WW (2009) Interactive feedback between the tropical Pacific decadal oscillation and ENSO in a coupled general circulation model. J Clim 22:6597–6611

    Article  Google Scholar 

  • Chung PH, Li T (2013) Interdecadal relationship between the mean state and El Niño types. J Clim 26:361–379

    Article  Google Scholar 

  • Di Lorenzo E, Liguori G, Furtado J, Schneider N, Anderson BT, Alexander M (2015) ENSO and meridional modes: A null hypothesis for Pacific climate variability. Geophys Res Lett 42:9440–9448

    Article  Google Scholar 

  • Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21:1845–1862

    Article  Google Scholar 

  • Ding R, Li J, Tseng YH, Sun C, Guo Y (2015) The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J Geophys Res Atmos 120:27–45

    Article  Google Scholar 

  • Fedorov AV, Hu SN, Lengaigne M, Guilyardi E (2015) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn 44:1381–1401

    Article  Google Scholar 

  • Feng L, Zhang R-H, Yu B, Han X (2020) The roles of wind stress and subsurface cold water in the second-year cooling of the 2017/18 La Niña event. Adv Atmos Sci 37:847–860

    Article  Google Scholar 

  • Gao C, Zhang R-H, Karnauskas KB, Zhang L, Tian F (2020) Separating freshwater flux effects on ENSO in a hybrid coupled model of the tropical Pacific. Clim Dyn 54:4605–4626

    Article  Google Scholar 

  • Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807

    Article  Google Scholar 

  • Hasselmann K (1988) PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J Geophy Res Atmos 93:11015–11021

    Article  Google Scholar 

  • Hendon HH, Lim E, Wang G, Alves O, Hudson D (2009) Prospects for predicting two flavors of El Niño. Geophys Res Lett 36:L19713

    Article  Google Scholar 

  • Hu ZZ, Kumar A, Jha B, Wang W, Huang B, Huang B (2012) An analysis of warm pool and cold tongue El Niños: Air-sea coupling processes, global influences, and recent trends. Clim Dyn 38:2017–2035

    Article  Google Scholar 

  • Hu ZZ, Kumar A, Huang B, Zhu J, L’Heureus M, McPhaden MJ, Yu JY (2020) The interdecadal shift of ENSO properties in 1999/2000: a review. J Clim 33:4441–4462

    Article  Google Scholar 

  • Huang NE, Shen Z, Long S, Wu M, Shih EH, Zheng Q, Tung C, Liu H (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings Mathematical Physical & Engineering Sciences 454:903–995

    Article  Google Scholar 

  • Huang B, Thorne PW, Banzon VF et al (2017) Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J Clim 30:8179–8205

    Article  Google Scholar 

  • Jeong HI, Lee Y, Karumuri A et al (2012) Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Clim Dyn 39:475–493

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Kim H-M, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science 325:77–80

    Article  Google Scholar 

  • Kim ST, Cia W, Jin FF et al (2014) Response of El Niño sea surface temperature variability to greenhouse warming. Nature Clim Change 4:786–790

    Article  Google Scholar 

  • Kleeman R, McCreary JP, Klinger BA (1999) A mechanism for generating ENSO decadal variability. Geophys Res Lett 26:1743–1746

    Article  Google Scholar 

  • Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Kumar A, Hu ZZ (2012) Uncertainty in the ocean-atmosphere feedbacks associated with ENSO in the reanalysis products. Clim Dyn 39:575–588

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys Res Lett 32:1–4

    Article  Google Scholar 

  • Lengaigne M, Menkes C, Aumont O, Gorgues T, Bopp L, André J-M, Madec G (2007) Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Clim Dyn 28:503–516

    Article  Google Scholar 

  • Li J, Xie SP, Cook ER et al (2011) Interdecadal modulation of ENSO amplitude during the last millennium. Nature Clim Change 1:114–118

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific decadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Mcgregor S, Timmermann A, England MH, Timm OE, Wittenberg AT (2013) Inferred changes in El Niño-Southern Oscillation variance over the past six centuries. Climate past Discuss 9:2929–2966

    Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in Earth science. Science 314:1740–1745

    Article  Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709

    Article  Google Scholar 

  • Newman M, Shin SI, Alexander MA (2011) Natural variation in ENSO flavors. Geophys Res Lett 38:L14705

    Article  Google Scholar 

  • Nonaka M, Xie SP, McCreary JP (2002) Decadal variations in the subtropical cells and equatorial Pacific SST. Geophys Res Lett 29:1116

    Article  Google Scholar 

  • Ogata T, Xie SP, Wittenberg AT, Sun DZ (2013) Interdecadal amplitude modulation of El Niño-Southern Oscillation and its impacts on tropical Pacific decadal variability. J Clim 26:7280–7297

    Article  Google Scholar 

  • Okumura YM, Deser C (2010) Asymmetry in the duration of El Niño and La Niña. J Clim 23:5826–5843

    Article  Google Scholar 

  • Philander SGH (1990) El Niño, La Niña, and the Southern Oscillation. Academic Press, London

    Google Scholar 

  • Pierce DW, Barnett TP, Latif M (2000) Connections between the Pacific Ocean tropics and midlatitudes on decadal timescales. J Clim 13:1173–1194

    Article  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Interdecadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Wea Rev 110:354–384

    Article  Google Scholar 

  • Ren HL, Scaife AA, Nick D et al (2019) Seasonal predictability of winter ENSO types in operational dynamical model predictions. Clim Dyn 52:3869–3890

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Wea Rev 115:1606–1626

    Article  Google Scholar 

  • Rothstein LM, Zhang RH, Busalacchi AJ, Chen D (1998) A numerical simulation of the mean water pathways in the subtropical and tropical Pacific Ocean. J Phys Oceanogr 28:322–343

    Article  Google Scholar 

  • Russell AM, Gnanadesikan A (2014) Understanding multidecadal variability in ENSO amplitude. J Clim 27:4037–4051

    Article  Google Scholar 

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726

    Article  Google Scholar 

  • Tang Y, Zhang R-H, Liu T, Duan WS, Yang D, Zheng F, Ren HL, Lian T, Gao C, Chen D, Mu M (2018) Progress in ENSO prediction and predictability study. National Sci Rev 5:826–839

    Article  Google Scholar 

  • Tao LJ, Duan WS, Stephane V (2020) Improving forecasts of El Niño diversity: a nonlinear forcing singular vector approach. Clim Dyn 55:739–754

    Article  Google Scholar 

  • Tian B, Duan WS (2016) Comparison of the initial errors most likely to cause a spring predictability barrier for two types of El Niño events. Clim Dyn 47:779–792

    Article  Google Scholar 

  • Tian F, Zhang R-H, Wang X (2019) A positive feedback onto ENSO due to tropical instability wave (TIW)-induced chlorophyll effects in the Pacific. Geophy Res Lett 46:889–897. https://doi.org/10.1029/2018GL081275

    Article  Google Scholar 

  • Timmermann A, An SI, Kug JS et al (2018) El Niño-Southern Oscillation complexity. Nature 559:535–545

    Article  Google Scholar 

  • Von Storch H, Bruns T, Fischer-Bruns I, Hasselmann K (1988) Principal oscillation pattern analysis of the 30- to 60- day oscillation in general circulation model equatorial troposphere. J Geophy Res Atmos 93:11022–11036

    Article  Google Scholar 

  • Wang B, An SI (2002) A mechanism for decadal changes of ENSO behavior: roles of background wind changes. Clim Dyn 18:475–486

    Article  Google Scholar 

  • Wang C, Li C, Mu M, Duan WS (2013) Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific. Clim Dyn 40:2887–2902

    Article  Google Scholar 

  • Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674

    Article  Google Scholar 

  • Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36:L12702

    Article  Google Scholar 

  • Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41

    Article  Google Scholar 

  • Xiang B, Wang B, Li T (2012) A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Clim Dyn 39:1–14

    Google Scholar 

  • Xu J, Chan JCL (2001) The role of the Asian-Australian monsoon system in the onset time of El Niño events. J Clim 14:418–433

    Article  Google Scholar 

  • Xu K, Huang QL, Tam CY, Wang W, Chen S, Zhu C (2018) Roles of tropical SST patterns during two types of ENSO in modulating wintertime rainfall over Southern China. Clim Dyn 52:523–538

    Article  Google Scholar 

  • Yang S, Li Z, Yu JY, Hu H, Dong W, He S (2018) El Niño-Southern Oscillation and its impact in the changing climate. National Sci Rev 5:840–857

    Article  Google Scholar 

  • Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Yu JY, Kao HY, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884

    Article  Google Scholar 

  • Yu JY, Kao PK, Paek H, Hsu HH, Hung CW, Lu MM, An SI (2015) Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J Clim 28:651–662

    Article  Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niño-Southern Oscillation. Mon Wea Rev 115:2262–2278

    Article  Google Scholar 

  • Zhang R-H, Busalacchi AJ (2008) Rectified effects of tropical instability wave (TIW)-induced atmospheric wind feedback in the tropical Pacific. Geophys Res Lett 35:1–6

    Article  Google Scholar 

  • Zhang R-H, Busalacchi AJ (2009) Freshwater flux (FWF)-induced oceanic feedback in a hybrid coupled model of the tropical Pacific. J Clim 22:853–879

    Article  Google Scholar 

  • Zhang R-H, Gao C (2016a) Role of subsurface entrainment temperature (Te) in the onset of El Niño events, as represented in an intermediate coupled model. Clim Dyn 46:1417–1435

    Article  Google Scholar 

  • Zhang R-H, Gao C (2016b) The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015–2016 El Niño event. Sci Bull 61:1061–1070

    Article  Google Scholar 

  • Zhang R-H, Rothstein LM, Busalacchi AJ (1998) Origin of upper-ocean warming and El Niño change on decadal scale in the tropical Pacific Ocean. Nature 391:879–883

    Article  Google Scholar 

  • Zhang R-H, Tian F, Busalacchi AJ, Wang X (2019) Freshwater flux and ocean chlorophyll produce nonlinear feedbacks in the tropical Pacific. J Clim 32:2037–2055

    Article  Google Scholar 

  • Zhang R-H, Gao C, Feng L (2022) Recent ENSO evolution and its real-time prediction challenges. National Sci Rev 9:nwac052. https://doi.org/10.1093/nsr/nwac052

    Article  Google Scholar 

  • Zhi H, Zhang R-H, Lin P, Yu P, Zhou G, Shi S (2020) Interannual salinity variability associated with the Central Pacific and Eastern Pacific El Niños in the tropical Pacific. J Geophys Res Oceans 125:e2020JC016090. https://doi.org/10.1029/2020JC016090

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the two anonymous reviewers for their numerous comments that helped improve the original manuscript. Hu was supported by the National Natural Science Foundation of China (NSFC; 42030410) and the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS; XDB40000000). Wang was supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (2022QNLM010301-4). Gao was supported by the Strategic Priority Research Program of the CAS (XDA19060102, XDB42000000). Zhang was supported by the Marine S&T Fund of Shandong Providence for Pilot National Laboratory for Marine Science and Technology (Qingdao) (2022QNLM010301-2), the NSFC (42030410) and the Startup Foundation for Introducing Talent of NUIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Hua Zhang.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: "The funding note information has been removed from the article."

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Wang, H., Gao, C. et al. Interdecadal wind stress variability over the tropical Pacific causes ENSO diversity in an intermediate coupled model. Clim Dyn 60, 1831–1847 (2023). https://doi.org/10.1007/s00382-022-06414-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06414-x

Keywords

Navigation