Skip to main content
Log in

Weakened relationship between ENSO and Antarctic sea ice in recent decades

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The dominant mode of interannual variability in the Antarctic sea ice is presented by a significant seesaw structure with an out-of-phase relationship between the sea ice anomaly in the Ross-Amundsen Sea and the Weddell Sea around the Antarctic continent, which is commonly called the “Antarctic dipole” (ADP). The present work shows that the relationship of El Niño-Southern Oscillation (ENSO) during its mature phase and the ADP in the subsequent austral cold season (June to November) underwent a significant decadal shift around the early 2000s with the correlation coefficients between them being reduced from 0.72 in 1979–2001 to 0.21 in 2002–2020. Further study suggests that this decadal shift is mainly due to the different responses of sea surface temperature (SST) in the Tasman Sea to ENSO. Before the early 2000s, the SST around the Tasman Sea was highly responsive to ENSO variability. Such SST anomalies persisted to the subsequent austral cold season and stimulated a downstream wave train similar to the Pacific South American pattern (PSA). Subsequently, a dipole pattern was induced with water vapor convergence (divergence) over the Ross-Amundsen Sea (the Weddell Sea), causing more (less) downward longwave radiation over there. Consequently, decreased (increased) SIC anomaly occurred in the Ross-Amundsen Sea (the Weddell Sea), favoring the formation of the ADP. After the early 2000s, the SST anomalies in the Tasman Sea in response to ENSO reduced notably, and therefore there was no significant ENSO signal transmitting to the ADP region to influence the sea ice change over there, resulting in the weakening of the ENSO-ADP relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

The data that support the findings of this study is public and freely available. Monthly sea ice concentration (SIC) data is available at https://nsidc.org/data/NSIDC-0051/versions/1. The atmospheric circulation data is available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthlymeans?%20tab=form%26tab=overview. Monthly sea surface temperature is available at https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html. Monthly mean sea surface height data is available at https://www.psl.noaa.gov/data/gridded/data.godas.html.

References

  • Alexander MA, Scott JD (2008) The role of Ekman ocean heat transport in the Northern Hemisphere response to ENSO. J Clim 21(21):5688–5707

    Article  Google Scholar 

  • Behringer D, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Paper 2.3 presented at Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Am. Meteorol. Soc., Seattle, Wash., Preprints. http://ams.confex.com/ams/84Annual/techprogram/paper_70720.htm.

  • Bracegirdle TJ, Marshall GJ (2012) The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J Clim 25(20):7138–7146

    Article  Google Scholar 

  • Cai W, Wu L, Lengaigne M et al. (2019) Pantropical climate interactions. Science 363(6430):eaav4236 https://doi.org/10.1126/science.aav4236.

  • Capotondi A, Wittenberg AT, Newman M et al (2015) Understanding ENSO diversity. Bull Amer Meteor Soc 96(6):921–938

    Article  Google Scholar 

  • Cavalieri DJ, Parkinson CL, Gloersen P et al. (1996) updated yearly. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center

  • Chen X, Wallace JM (2016) Orthogonal PDO and ENSO indices. J Clim 29(10):3883–3892

    Article  Google Scholar 

  • Dash MK, Pandey P, Vyas N et al (2013) Variability in the ENSO-induced southern hemispheric circulation and Antarctic sea ice extent. Int J Climatol 33(3):778–783

    Article  Google Scholar 

  • Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Clim 17(16):3109–3124

    Article  Google Scholar 

  • Ding R, Li J, Tseng Yh et al (2015) The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J Geophys Res 120(1):27–45

    Article  Google Scholar 

  • Ding R, Li J, Tseng Yh et al (2016) Interdecadal change in the lagged relationship between the Pacific-South American pattern and ENSO. Climate Dyn 47(9–10):2867–2884

    Article  Google Scholar 

  • Ferster BS, Subrahmanyam B, Macdonald AM (2018) Confirmation of ENSO-Southern Ocean teleconnections using satellite-derived SST. Remote Sensing 10(2):331

    Article  Google Scholar 

  • Gao R, Zhang R, Wen M et al (2019) Interdecadal changes in the asymmetric impacts of ENSO on wintertime rainfall over China and atmospheric circulations over western North Pacific. Climate Dyn 52(12):7525–7536

    Article  Google Scholar 

  • Gao K, Duan A, Chen D et al (2022) Arctic autumn warming since 2002 dominated by changes in moisture modulated by multiple large scale atmospheric circulations. Atmos Res. https://doi.org/10.1016/j.atmosres.2021.105879

    Article  Google Scholar 

  • Garreaud R, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J Clim 12(7):2113–2123

    Article  Google Scholar 

  • Gershunov A, Barnett TP (1998) Interdecadal modulation of ENSO teleconnections. Bull Amer Meteor Soc 79(12):2715–2726

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Quart J Roy Meteor Soc 106(449):447–462

    Article  Google Scholar 

  • Gloersen P (1995) Modulation of hemispheric sea-ice cover by ENSO events. Nature 373(6514):503–506

    Article  Google Scholar 

  • Gossart A, Helsen S, Lenaerts J et al (2019) An evaluation of surface climatology in state-of-the-art reanalyses over the Antarctic Ice Sheet. J Clim 32(20):6899–6915

    Article  Google Scholar 

  • Guo Y, Wen Z, Zhu Y et al (2022) Effect of the late-1990s change in tropical forcing on teleconnections to the Amundsen-Bellingshausen Seas region during austral autumn. J Clim. https://doi.org/10.1175/JCLI-D-21-0965.1

    Article  Google Scholar 

  • Holland MM, Bitz CM, Hunke EC (2005) Mechanisms forcing an Antarctic dipole in simulated sea ice and surface ocean conditions. J Clim 18(12):2052–2066

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38(6):1179–1196

    Article  Google Scholar 

  • Hoskins B, Simmons A, Andrews D (1977) Energy dispersion in a barotropic atmosphere. Quart J Roy Meteor Soc 103(438):553–567

    Article  Google Scholar 

  • Huang B, Thorne PW, Banzon VF et al (2017) Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J Clim 30(20):8179–8205

    Article  Google Scholar 

  • Irving D, Simmonds I (2016) A new method for identifying the Pacific-South American pattern and its influence on regional climate variability. J Clim 29(17):6109–6125

    Article  Google Scholar 

  • Isaacs FE, Renwick JA, Mackintosh AN et al. (2021) ENSO modulates summer and autumn sea ice variability around Dronning Maud Land, Antarctica. J Geophys Res: Atmos 126(5):e2020JD033140

  • Jin D, Kirtman BP (2009) Why the Southern Hemisphere ENSO responses lead ENSO. J Geophys Res: Atmos 114(D23). doi:https://doi.org/10.1029/2009JD012657

  • Jones P, Lister D (2015) Antarctic near-surface air temperatures compared with ERA-Interim values since 1979. Int J Climatol 35(7):1354–1366

    Article  Google Scholar 

  • Kidson JW, Renwick JA (2002) The Southern Hemisphere evolution of ENSO during 1981–99. J Clim 15(8):847–863

    Article  Google Scholar 

  • Kuleshov Y, Qi L, Fawcett R et al. (2008) On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophys Res Lett 35(14). doi:https://doi.org/10.1029/2007GL032983

  • Kwok R, Comiso J (2002) Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. J Clim 15(5):487–501

    Article  Google Scholar 

  • Kwok R, Comiso JC, Lee T et al. (2016) Linked trends in the South Pacific sea ice edge and Southern Oscillation Index. Geophys Res Lett 43(19):10,295–210,302

  • Li G, Li C, Tan Y et al (2014) The interdecadal changes of South Pacific sea surface temperature in the mid-1990s and their connections with ENSO. Adv Atmos Sci 31(1):66–84

    Article  Google Scholar 

  • Li X, Holland DM, Gerber EP et al (2015) Rossby waves mediate impacts of tropical oceans on West Antarctic atmospheric circulation in austral winter. J Clim 28(20):8151–8164

    Article  Google Scholar 

  • Li X, Cai W, Meehl GA et al (2021) Tropical teleconnection impacts on Antarctic climate changes. Nat Rev Earth Env 2(10):680–698

    Article  Google Scholar 

  • Lin CY, Yu JY, Hsu HH (2015) CMIP5 model simulations of the Pacific meridional mode and its connection to the two types of ENSO. Inter J Climatol 35(9):2352–2358

    Article  Google Scholar 

  • Liu F, Zhang W, Jin F-F et al (2021) Decadal modulation of the ENSO–Indian ocean basin warming relationship during the decaying summer by the interdecadal pacific oscillation. J Clim 34(7):2685–2699

    Article  Google Scholar 

  • Liu J, Yuan X, Rind D et al. (2002) Mechanism study of the ENSO and southern high latitude climate teleconnections. Geophys Res Lett 29(14). doi: https://doi.org/10.1029/2002GL015143

  • Liu J, Curry JA, Martinson DG (2004) Interpretation of recent antarctic sea ice variability. Geophys Res Lett 31(2). doi:https://doi.org/10.1029/2003GL018732

  • Lou J, Holbrook NJ, O’Kane TJ (2019) South Pacific decadal climate variability and potential predictability. J Clim 32(18):6051–6069

    Article  Google Scholar 

  • McPhaden MJ, Santoso A, Cai W (2020) Introduction to El Niño Southern Oscillation in a Changing Climate. El Niño Southern Oscillation in a Changing Climate 1-19. M. J. McPhaden, A. Santoso, and W. J. Cai, Eds., American Geophysical Union, 3–20

  • Min Q, Zhang R (2020) The contribution of boreal spring South Pacific atmospheric variability to El Niño occurrence. J Clim 33(19):8301–8313

    Article  Google Scholar 

  • Min Q, Su J, Zhang R (2017) Observation-based comparisons of the impacts of the meridional modes of the South and North Pacific on the ENSO. J Clim 30(5):1705–1720

    Article  Google Scholar 

  • Mo KC, Higgins RW (1998) The Pacific-South American modes and tropical convection during the Southern Hemisphere winter. Mon Wea Rev 126(6):1581–1596

    Article  Google Scholar 

  • Mo KC, Paegle JN (2001) The Pacific-South American modes and their downstream effects. Int J Climatol: J Roy Meteor Soc 21(10):1211–1229

    Article  Google Scholar 

  • Moon JH, Song YT, Lee H (2015) PDO and ENSO modulations intensified decadal sea level variability in the tropical Pacific. J Geophys Res: Oceans 120(12):8229–8237

    Article  Google Scholar 

  • O’Kane TJ, Monselesan DP, Risbey JS (2017) A multiscale reexamination of the Pacific-South American pattern. Mon Wea Rev 145(1):379–402

    Article  Google Scholar 

  • Pope JO, Holland PR, Orr A et al (2017) The impacts of El Niño on the observed sea ice budget of West Antarctica. Geophys Res Lett 44(12):6200–6208

    Article  Google Scholar 

  • Power S, Casey T, Folland C et al (1999) Interdecadal modulation of the impact of ENSO on Australia. Climate Dyn 15(5):319–234

    Article  Google Scholar 

  • Raphael MN, Marshall G, Turner J et al (2016) The Amundsen Sea low: Variability, change, and impact on Antarctic climate. Bull Amer Meteor Soc 97(1):111–121

    Article  Google Scholar 

  • Rebert JP, Donguy JR, Eldin G et al (1985) Relations between sea level, thermocline depth, heat content, and dynamic height in the tropical Pacific Ocean. J Geophys Res 90(C6):11719–11725

    Article  Google Scholar 

  • Renwick JA (2002) Southern Hemisphere circulation and relations with sea ice and sea surface temperature. J Clim 15(21):3058–3068

    Article  Google Scholar 

  • Ribera P, Mann ME (2003) ENSO related variability in the Southern Hemisphere, 1948–2000. Geophys Res Lett 30(1):61–64

    Article  Google Scholar 

  • Rind D, Chandler M, Lerner J et al (2001) Climate response to basin-specific changes in latitudinal temperature gradients and implications for sea ice variability. J Geophys Res: Atmos 106(D17):20161–20173

    Article  Google Scholar 

  • Sallée JB, Speer K, Rintoul S (2010) Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat Geosci 3(4):273–279

    Article  Google Scholar 

  • Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45(7):1228–1251

    Article  Google Scholar 

  • Sato K, Simmonds I (2021) Antarctic skin temperature warming related to enhanced downward longwave radiation associated with increased atmospheric advection of moisture and temperature. Environ Res Lett 16(6):064059

    Article  Google Scholar 

  • Sato K, Inoue J, Simmonds I et al (2021) Antarctic Peninsula warm winters influenced by Tasman Sea temperatures. Nat Commun 12(1):1–9

    Article  Google Scholar 

  • Scott Yiu YY, Maycock AC (2019) On the seasonality of the El Niño teleconnection to the Amundsen Sea region. J Clim 32(15):4829–4845

    Article  Google Scholar 

  • Simmonds I, Jacka T (1995) Relationships between the interannual variability of Antarctic sea ice and the Southern Oscillation. J Clim 8(3):637–647

    Article  Google Scholar 

  • Simpkins GR, Ciasto LM, England MH (2013) Observed variations in multidecadal Antarctic sea ice trends during 1979–2012. Geophys Res Lett 40(14):3643–3648

    Article  Google Scholar 

  • Stammerjohn SE, Martinson D, Smith R et al. (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J Geophys Res: Oceans 113(C3). https://doi.org/10.1029/2007JC004269

  • Su JZ, Zhang RH, Zhu CW (2013) ECHAM5-simulated impacts of two types of El Niño on the winter precipitation anomalies in South China. Atmos Oceanic Sci Lett 6(5):360–364

    Article  Google Scholar 

  • Su J, Li T, Zhang R (2014) The initiation and developing mechanisms of central Pacific El Niños. J Clim 27(12):4473–4485

    Article  Google Scholar 

  • Takaya K, Nakamura H (1997) A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys Res Lett 24(23):2985–2988

    Article  Google Scholar 

  • Takaya K, Nakamura H (2001) A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58(6):608–627

    Article  Google Scholar 

  • Tandeo P, Chapron B, Ba S et al (2013) Segmentation of mesoscale ocean surface dynamics using satellite SST and SSH observations. IEEE Trans Geosci Remote Sens 52(7):4227–4235

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Amer Meteor Soc 78(12):2771–2778

    Article  Google Scholar 

  • Turner J (2004) The El Niño-southern oscillation and antarctica. Int J Climatol: J Roy Meteor Soc 24(1):1–31

    Article  Google Scholar 

  • Turner J, Phillips T, Hosking JS et al (2013) The amundsen sea low. Int J Climatol 33(7):1818–1829

    Article  Google Scholar 

  • Wang C (2019) Three-ocean interactions and climate variability: a review and perspective. Climate Dyn 53(7):5119–5136

    Article  Google Scholar 

  • Wang L, Chen W, Huang R (2008) Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys Res Lett 35(20):L20702

    Article  Google Scholar 

  • Wang Z, Zhang Z, Zhou M et al (2020) Seasonal linkage of the Southern Hemisphere extratropical climate variability to two types of ENSO. Acta Oceanol Sin 39(1):63–73

    Article  Google Scholar 

  • Yang S, Li Z, Yu JY et al (2018) El Niño-Southern Oscillation and its impact in the changing climate. Natl Sci Rev 5(6):840–857

    Article  Google Scholar 

  • Yeh SW, Kug JS, Dewitte B et al (2009) El Niño in a changing climate. Nature 461(7263):511–514

    Article  Google Scholar 

  • Yeo S-R, Kim K-Y (2015) Decadal changes in the Southern Hemisphere sea surface temperature in association with El Niño-Southern Oscillation and Southern Annular Mode. Climate Dyn 45(11):3227–3242

    Article  Google Scholar 

  • Yu JY, Paek H, Saltzman ES et al (2015) The early 1990s change in ENSO-PSA-SAM relationships and its impact on Southern Hemisphere climate. J Clim 28(23):9393–9408

    Article  Google Scholar 

  • Yuan X (2004) ENSOrelated impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarctic Sci 16(4):415–425

    Article  Google Scholar 

  • Yuan X, Martinson DG (2000) Antarctic sea ice extent variability and its global connectivity. J Clim 13(10):1697–1717

    Article  Google Scholar 

  • Yuan X, Martinson DG (2001) The Antarctic dipole and its predictability. Geophys Res Lett 28(18):3609–3612

    Article  Google Scholar 

  • Yuan X, Li C (2008) Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J Geophys Res: Oceans 113(C6). doi:https://doi.org/10.1029/2006JC004067

  • Zhang H, Clement A, Di Nezio P (2014a) The South Pacific meridional mode: a mechanism for ENSO-like variability. J Clim 27(2):769–783

    Article  Google Scholar 

  • Zhang H, Deser C, Clement A et al (2014b) Equatorial signatures of the Pacific Meridional Modes: Dependence on mean climate state. Geophys Res Lett 41(2):568–574

    Article  Google Scholar 

  • Zhang W, Jin FF, Turner A (2014c) Increasing autumn drought over southern China associated with ENSO regime shift. Geophys Res Lett 41(11):4020–4026

    Article  Google Scholar 

  • Zhang R, Min Q, Su J (2017) Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: role of the anomalous western North Pacific anticyclone. Sci China Earth Sci 60(6):1124–1132

    Article  Google Scholar 

  • Zhao S, Jin FF, Long X et al. (2021) On the breakdown of ENSO's relationship with thermocline depth in the central‐equatorial Pacific. Geophys Res Lett 48(9):e2020GL092335

  • Zhao C, Geng X, Zhang W et al. (2022) Atlantic Multidecadal Oscillation modulates ENSO atmospheric anomaly amplitude in the tropical Pacific. J Clim 1–48

  • Zheng F, Wang H, Luo H et al (2020) Decadal change in ENSO related seasonal precipitation over southern China under influences of ENSO and its combination mode. Climate Dyn 54(3):1973–1986

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the constructive comments from three anonymous reviewers, which help greatly to improve the manuscript. This research was jointly supported by the National Key Research and Development Program of China (2019YFC1509105) and the National Natural Science Foundation of China (41790472).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renhe Zhang.

Ethics declarations

Conflict of Interest

We declare that we have no conflict of interest/

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17388 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, J., Zhang, R. Weakened relationship between ENSO and Antarctic sea ice in recent decades. Clim Dyn 60, 1313–1327 (2023). https://doi.org/10.1007/s00382-022-06364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06364-4

Keywords

Navigation