Skip to main content

Advertisement

Log in

Atmospheric teleconnection associated with the Atlantic multidecadal variability in summer: assessment of the CESM1 model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Observational analysis shows that the Atlantic multidecadal variability (AMV) is associated with climate variability in the Northern Hemisphere through a zonal atmospheric teleconnection extending from the North Atlantic Ocean and propagating eastward around the Northern Hemisphere. We studied the fidelity of model simulations in reproducing the observed summer AMV and the associated impacts on the mid-latitude climate by analysing simulations using the National Centre for Atmospheric Research Community Earth System Model Version 1 (CESM1), including CESM1 North Atlantic idealized and pacemaker simulations, CESM1 large ensemble twentieth century uninitialized simulations and large ensemble initialized CESM1 decadal predictions. To further compare the fidelity of CESM1, we also analysed large ensemble simulations from three other models. Our results suggest that the uninitialized large ensemble simulations from all models can produce an AMV time evolution and its regional climate impacts similar to the observations to certain degree. By initializing the observed oceanic condition in decadal prediction simulations, the simulated AMV and its regional impacts are closer to the observed ones than those in uninitialized ensemble simulations. In addition, the pacemaker simulations that nudged the time-evolving observed North Atlantic sea surface temperature anomalies produce spatiotemporal characteristics of the AMV and AMV climate impacts closer to the observed ones than the uninitialized simulations. We conclude that although coupled models can produce AMV and its regional impacts similar to observed, proper initialization and bias correction of the sea surface temperature spatial and temporal structure can improve this capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

All data used in this study are publicly available. The CESM1 large ensemble simulations, North Atlantic idealized and pacemaker simulations, and MMLEA simulations are accessible via the National Center for Atmospheric Research (NCAR) Climate Data Gateway, and the observational data are available through the respective institutions.

Code availability

The figures were created by using the NCAR Command Language (http://www.ncl.ucar.edu/).

References

  • Ba J, Keenlyside NS, Latif M, Park W, Ding H, Lohmann K, Mignot J, Menary M, Otterå OH, Wouters B, Salas Y, Melia D, Oka A, Bellucci A, Volodin E (2014) A multi-model comparison of Atlantic multidecadal variability. Clim Dyn 43:2333–2348

    Article  Google Scholar 

  • Boer GJ, Smith DM, Cassou C, Doblas-Reyes F, Danabasoglu G, Kirtman B, Kushnir Y, Kimoto M, Meehl GA, Msadek R, Mueller WA, Taylor KE, Zwiers F, Rixen M, Ruprich-Robert Y, Eade R (2016) The decadal climate prediction project (DCPP) contribution to CMIP6. Geosci Model Dev 9:3751–3777

    Article  Google Scholar 

  • Booth BB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232

    Article  Google Scholar 

  • Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-year monthly analysis based on gauge observations. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  • Cheng W, Bitz CM, Chiang JCH (2007) Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation. In: Ocean circulation: mechanisms and impacts, geophysical monograph series 173, American Geophysical Union. https://doi.org/10.1029/173GM19.

  • Clement A, Bellomo K, Murphy LN, Cane MA, Mauritsen T, Radal G, Stevens B (2015) The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science 350:320–324

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Delworth TL, Mann ME, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:1993–2011

    Article  Google Scholar 

  • Deser C, Lehner F, Rodgers KB, Ault T, Delworth TL, DiNezio PN, Fiore A, Frankignoul C, Fyfe JC, Horton DE, Kay JE, Knutti R, Lovenduski NS, Marotzke J, McKinnon KA, Minobe S, Randerson J, Screen JA, Simpson IR, Ting M (2020) Insights from Earth system model initial–condition large ensembles and future prospects. Nat Clim Change 10:277–286

    Article  Google Scholar 

  • Doblas-Reyes FJ, Andreu-Burillo I, Chikamoto Y, Garcia-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodrigues LRL, van Oldenborgh GJ (2013) Initialized near–term regional climate change prediction. Nat Commun 4:1715. https://doi.org/10.1038/ncomms2704

    Article  Google Scholar 

  • Dong B, Sutton RT, Chen W, Liu X, Lu R, Sun Y (2016) Abrupt summer warming and changes in temperature extremes over northeast Asia since the mid-1990s: drivers and physical processes. Adv Atmos Sci 33:1005–1023

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Garuba OA, Lu J, Liu F, Singh HA (2018a) The active role of the ocean in the temporal evolution of climate sensitivity. Geophys Res Lett 45:306–315

    Article  Google Scholar 

  • Garuba OA, Lu J, Singh HA, Liu F, Rasch P (2018b) On the relative roles of the atmosphere and ocean in the Atlantic multidecadal variability. Geophys Res Lett 45:9186–9196

    Article  Google Scholar 

  • Guo Q (1983) The summer monsoon intensity index in East Asia and its variation. Acta Geogr Sin 38:208–217

    Google Scholar 

  • Han T, He S, Hao X, Wang H (2018) Recent interdecadal shift in the relationship between Northeast China’s winter precipitation and the North Atlantic and Indian Oceans. Clim Dyn 50:1413–1424

    Article  Google Scholar 

  • Hu A, Meehl GA, Han W, Abe-Ouchi A, Morrill C, Okazaki Y, Chikamoto MO (2012) The Pacific-Atlantic seesaw and the bering strait. Geophys Res Lett 39:L03702. https://doi.org/10.1029/2011GL050567

    Article  Google Scholar 

  • Hu Z, Hu A, Hu Y (2018) Contributions of interdecadal Pacific oscillation and Atlantic multidecadal oscillation to global ocean heat content distribution. J Clim 31:1227–1244

    Article  Google Scholar 

  • Hurrell JW et al (2013) The community earth system model: a framework for collaborative research. Bull Amer Meteor Soc 94:1339–1360

    Article  Google Scholar 

  • Jeffrey S et al (2013) Australia’s CMIP5 submission using the CSIRO–Mk3. 6 model. Aust Meteorol Ocean 63:1–13

    Article  Google Scholar 

  • Jiang D, Si D, Lang X (2020) Evaluation of East Asian summer climate prediction from the CESM large–ensemble initialized decadal prediction project. J Meteor Res 34:1–12

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–472

    Article  Google Scholar 

  • Kay JE et al (2015) The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteor Soc 96:1333–1349

    Article  Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal–scale climate prediction in the North Atlantic sector. Nature 453:84–88

    Article  Google Scholar 

  • Kirchmeier-Young MC, Zwiers FW, Gillett NP (2017) Attribution of extreme events in Arctic Sea ice extent. J Clim 30:553–571

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708

    Article  Google Scholar 

  • Latif M, Roeckner E, Botzet M, Esch M, Haak H, Hagemann S, Jungclaus J, Legutke S, Marsland S, Mikolajewicz U, Mitchell J (2004) Reconstructing, monitoring, and predicting multidecadal–scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Clim 17:1605–1614

    Article  Google Scholar 

  • Li X, Xie SP, Gille ST, Yoo C (2015) Atlantic–induced pan–tropical climate change over the past three decades. Nat Clim Chan 6:275–279

    Article  Google Scholar 

  • Li Y, Ding Y, Li W (2017) Interdecadal variability of the Afro-Asian summer monsoon system. Adv Atmos Sci 34:833–846

    Article  Google Scholar 

  • Lin P, Yu Z, Lu J, Ding M, Hu A, Liu H (2019) Two regimes of Atlantic multidecadal oscillation: cross–basin dependent or Atlantic–intrinsic. Sci Bull 64:198–204

    Article  Google Scholar 

  • Liu Y, Chiang JCH (2012) Coordinated abrupt weakening of the Eurasian and North African monsoons in the 1960s and links to extratropical North Atlantic cooling. J Clim 25:3532–3548

    Article  Google Scholar 

  • Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. EOS Trans AGU 87(24):233–241

    Article  Google Scholar 

  • Marotzke J, Müller WA, Vamborg F, Becker P, Cubasch U, Feldmann H, Kaspar F, Kottmeier C, Marini C, Polkova I, Prömmel K, Rust H, Stammer D, Ulbrich U, Kadow C, Köhl A, Kröger J, Kruschke T, Pinto JG, Pohlmann H, Reyers M, Schröder M, Sienz F, Timmreck C, Ziese M (2016) MiKlip—a national research project on decadal climate prediction. Bull Am Meteorol Soc 97:2379–2394

    Article  Google Scholar 

  • McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin F-F, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892

    Article  Google Scholar 

  • McGregor S, Stuecker MF, Kajtar JB, England MH, Collins M (2018) Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nat Clim Change 8:493–498

    Article  Google Scholar 

  • Medhaug I, Furevik T (2011) North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci 7:389–404

    Article  Google Scholar 

  • Meehl GA, Teng H (2014) Regional precipitation simulations for the mid-1970s shift and early-2000s hiatus. Geophys Res Lett 41:7658–7665

    Article  Google Scholar 

  • Meehl GA et al (2014) Decadal climate prediction: an update from the trenches. Bull Amer Meteor Soc 95:243–267

    Article  Google Scholar 

  • Meehl GA, Hu A, Teng H (2016) Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nat Commun 7:11718

    Article  Google Scholar 

  • Meehl GA, Hu A, Castruccio F, England MH, Bates SC, Danabasoglu G, McGregor S, Arblaster JM, Xie S-P, Rosenbloom N (2021) Atlantic and Pacific tropics connected by mutually interactive decadal–timescale processes. Nat Geosci 14:36–42

    Article  Google Scholar 

  • Miao J, Jiang D (2021) Multidecadal variations in the East Asian winter monsoon and their relationship with the Atlantic Multidecadal Oscillation since 1850. J Clim 34:7525–7539

    Article  Google Scholar 

  • Monerie P-A, Robson J, Dong B, Dunstone N (2018) A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia? Clim Dyn 51:473–491

    Article  Google Scholar 

  • Monerie P-A, Robson J, Dong B, Hodson DLR, Klingaman NP (2019) Effect of the Atlantic multidecadal variability on the global monsoon. Geophys Res Lett 46:1765–1775

    Article  Google Scholar 

  • Monerie P-A, Robson J, Dong B, Hodson D (2021) Role of the Atlantic multidecadal variability in modulating East Asian climate. Clim Dyn 56:381–398

    Article  Google Scholar 

  • Nicolì D, Bellucci A, Iovino D, Ruggieri P, Gualdi S (2020) The impact of the AMV on Eurasian summer hydrological cycle. Sci Rep 10:14444. https://doi.org/10.1038/s41598-020-71464-2

    Article  Google Scholar 

  • Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694

    Article  Google Scholar 

  • Parsons LA, Yin J, Overpeck JT, Stouffer RJ, Malyshev S (2014) Influence of the atlantic meridional overturning circulation on the monsoon rainfall and carbon balance of the american tropics. Geophys Res Lett 41:146–151

    Article  Google Scholar 

  • Qasmi S, Cassou C, Boé J (2017) Teleconnection between Atlantic multidecadal variability and European temperature: diversity and evaluation of the coupled model intercomparison project phase 5 models. Geophys Res Lett 44:11140–11149

    Article  Google Scholar 

  • Qasmi S, Cassou C, Boé J (2020) Teleconnection processes linking the intensity of the Atlantic multidecadal variability to the climate impact over Europe in boreal winter. J Clim 33:2681–2700

    Article  Google Scholar 

  • Qasmi S, Sanchez-Gomez E, Ruprich-Robert Y, Boé J, Cassou C (2021) Modulation of the occurrence of heatwaves over the Euro-Mediterranean region by the intensity of the atlantic multidecadal variability. J Clim 34:1099–1114

    Article  Google Scholar 

  • Ruggier P, Bellucci A, Nicolí D, Athanasiadis P, Gualdi S, Cassou C, Castruccio F, Danabasoglu G, Davini P, Dunstone N, Eade R, Gastineauc G, Harvey B, Hermanson L, Qasmi S, Ruprich-Robert Y, Sanchez-Gomez E, Smith D, Wild S, Zampieri M (2021) Atlantic multidecadal variability and North Atlantic jet: a multimodel view from the decadal climate prediction project. J Clim 34:347–360

    Article  Google Scholar 

  • Ruprich-Robert Y, Castruccio F, Msadek R, Yeager SG, Delworth TL, Danabasoglu G (2017) Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2 0.1 and NCAR CESM1 global coupled models. J Clim 30:2785–2810

    Article  Google Scholar 

  • Seidov D, Mishonov A, Reagan J, Parsons R (2017) Multidecadal variability and climate shift in the North Atlantic Ocean. Geophys Res Lett 44:4985–4993

    Article  Google Scholar 

  • Si D, Ding Y (2016) Oceanic forcings of the interdecadal variability in East Asian summer rainfall. J Clim 29:7633–7649

    Article  Google Scholar 

  • Si D, Hu A (2017) Internally generated and externally forced multidecadal oceanic modes and their influence on the summer rainfall over East Asia. J Clim 30:8299–8316

    Article  Google Scholar 

  • Si D, Hu A, Wang H, Chao Q (2019) Predicting the Atlantic Muldidecadal Variability from initialized simulations. J Clim 32:8701–8711

    Article  Google Scholar 

  • Si D, Jiang D, Wang H (2020) Intensification of the Atlantic multidecadal variability since 1870: implications and possible causes. J Geophys Res Atmos 125:e2019JD030977

    Article  Google Scholar 

  • Sun L, Alexander M, Deser C (2018) Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J Clim 31:7823–7843

    Article  Google Scholar 

  • Sutton RT, Dong B (2012) Atlantic ocean influence on a shift in European climate in the 1990s. Nat Geosci 5:788–792

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Takaya K, Nakamura H (1997) A formulation of a wave–activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys Res Lett 24:2985–2988

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 90:1467–1485

    Google Scholar 

  • The NCAR Command Language (Version 6.6.2) [Software]. (2019). Boulder, Colorado: UCAR/NCAR/CISL/TDD. https://doi.org/10.5065/D6WD3XH5

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth–century SST trends in the North Atlantic. J Clim 22:1469–1481

    Article  Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys Res Lett 38:L17705. https://doi.org/10.1029/2011GL048712

    Article  Google Scholar 

  • van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38:1263–1280

    Article  Google Scholar 

  • Wills RCJ, Armour KC, Battisti DS, Hartmann DL (2019) Ocean–atmosphere dynamic coupling fundamental to the Atlantic Multidecadal Oscillation. J Clim 32:251–272

    Article  Google Scholar 

  • Yang Q, Ma Z, Fan X, Yang Z, Xu Z, Wu P (2017) Decadal modulation of precipitation patterns over eastern China by sea surface temperature anomalies. J Clim 30:7017–7033

    Article  Google Scholar 

  • Yang D, Arblaster JM, Meehl GA, England MH, Lim E, Bates S, Rosenbloom N (2020) Role of tropical variability in driving decadal shifts in the southern hemisphere summertime eddy-driven jet. J Clim 33:5445–5463

    Article  Google Scholar 

  • Yeager S et al (2018) Predicting near-term changes in the Earth system: a large ensemble of initialized decadal prediction simulations using the community earth system model. Bull Am Meteor Soc 99:1867–1886

    Article  Google Scholar 

  • Yin J, Stouffer RJ (2007) Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere–ocean general circulation models. J Clim 20:4293–4315

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic Multidecadal Oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. https://doi.org/10.1029/2006GL026267

    Article  Google Scholar 

  • Zhang R, Delworth TL (2007) Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability. Geophys Res Lett 34:L23708. https://doi.org/10.1029/2007GL031601

    Article  Google Scholar 

  • Zhang L, Kristopher BK (2017) The role of tropical interbasin SST gradients in forcing Walker circulation trends. J Clim 30:499–508

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous reviewers for their constructive comments and significantly improving the manuscript. D. Si, D. Jiang and X. Lang were jointly supported by the National Natural Science Foundation of China (Grants 41875104), the Second Tibetan Plateau Scientific Expedition and Research Program of China (Grant 2019QZKK0101), and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20100304). A. Hu was supported by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy's Office of Biological & Environmental Research (BER) via National Science Foundation IA 1844590. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and resources from the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation and other agencies. We also acknowledge the CESM1 large ensemble community project, North Atlantic idealized and pacemaker ensemble simulations and multi-model large ensemble archive project.

Author information

Authors and Affiliations

Authors

Contributions

DS made the calculations and created the figures. AH, DJ, DS and XL contributed to the interpreting results and writing the paper.

Corresponding authors

Correspondence to Dong Si or Aixue Hu.

Ethics declarations

Conflict of interest

The authors declare no competing of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, D., Hu, A., Jiang, D. et al. Atmospheric teleconnection associated with the Atlantic multidecadal variability in summer: assessment of the CESM1 model. Clim Dyn 60, 1043–1060 (2023). https://doi.org/10.1007/s00382-022-06331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06331-z

Keywords

Navigation