Skip to main content

Advertisement

Log in

A new perspective on ENSO-Indian summer monsoon rainfall relationship in a warming environment

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A robust estimate of the ENSO-Indian summer monsoon rainfall (ISMR) relationship in a changing climate is critically important for projection of the ISMR predictability. In this study, we show that the increasing nonlinear trend of ISMR and global sea surface temperatures (SST) associated with the trend of the global warming mode leads to a ‘long-term’ component to the ENSO-ISMR relationship together with a ‘short-range’ component associated with the ENSO mode. Using historical and projected simulations by some state-of-the-art CMIP5 models, we separate the global warming mode from other oscillatory modes including the ENSO mode through a combined empirical orthogonal function (CEOF) analysis, supported by a signal-to-noise maximizing EOF analysis. We find that the ‘short-term’ ENSO-ISMR relationship, represented by significant negative correlation between JJAS NINO3.4 SST and ISMR does not change appreciably with increase in green-house gas (GHG) forcing while the ‘long-term’ relationship changes from weak to significantly positive. We demonstrate that in a warming environment, the global warming mode must be taken into account together with the ‘natural’ ENSO mode in order to predict ISMR with confidence and emphasize that predictability of ISMR at any given time must be reassessed taking into account contributions from both short and long-term ENSO-ISMR relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Arkin P (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-Present). J Hydrometeorol 4(6):1147–1167

    Google Scholar 

  • Ajayamohan RS, Rao SA, Yamagata T (2008) Influence of Indian Ocean Dipole on poleward propagation of boreal summer intraseasonal oscillations. J Clim 21:5437–5454

    Google Scholar 

  • Allen MR, Smith LA (1997) Optimal filtering in singular spectrum analysis. Phys Lett A 234(6):419–428

    Google Scholar 

  • Annamalai H, Hamilton K, Sperber KR (2007) The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20(6):1071–1092

    Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  • Ashrit RG, Kumar KR, Kumar KK (2001) ENSO-monsoon relationships in a greenhouse warming scenario. Geophys Res Lett 28(9):1727–1730

    Google Scholar 

  • Azad S, Rajeevan M (2016) Possible shift in the ENSO-Indian monsoon rainfall relationship under future global warming. Sci Rep 6:20145. https://doi.org/10.1038/srep20145

    Article  Google Scholar 

  • Cao L, Bala G, Caldeira K (2012) Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environ Res Lett 7:034015. https://doi.org/10.1088/1748-9326/7/3/034015

    Article  Google Scholar 

  • Capotondi A et al (2015) Understanding ENSO Diversity. Bull Am Meteor Soc 96:921–938

    Google Scholar 

  • Cash BA et al (2017) Sampling variability and the changing ENSO-monsoon relationship. Clim Dyn 48:4071–4079. https://doi.org/10.1007/s00382-016-3320-3

    Article  Google Scholar 

  • Chang P, Saravanan R, Ji L, Hegerl GC (2000) The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J Clim 13(13):2195–2216

    Google Scholar 

  • Charney JG, Shukla J (1981) Predictability of Monsoons. Monsoon Dyn. https://doi.org/10.1017/CBO9780511897580.009

    Article  Google Scholar 

  • DelSole T, Shukla J (2012) Climate models produce skillful predictions of Indian summer monsoon rainfall. Geophy Res Lett 39:L09703. https://doi.org/10.1029/2012GL051279

    Article  Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Zeng F (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484–3519

    Google Scholar 

  • Endo H, Kitoh A (2014) Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys Res Lett 41(5):1704–1710

    Google Scholar 

  • Gershunov A, Schneider N, Barnett T (2001) Low-frequency modulation of the ENSO-Indian monsoon rainfall relationship: Signal or noise? J Clim 14:2486–2492

    Google Scholar 

  • Goswami BN, Xavier PK (2005) ENSO control on the south Asian monsoon through the length of the rainy season. Geophys Res Lett 32:L18717. https://doi.org/10.1029/2005GL023216

    Article  Google Scholar 

  • Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett 33:L02706. https://doi.org/10.1029/2005GL024803

    Article  Google Scholar 

  • Goswami BN, Kripalani RH, Borgaonkar HP, Preethi B (2016) Multi-decadal variability in indian summer monsoon rainfall using proxy data. In: Chang CP, Ghil M, Latif M, Wallace JM (eds) Climate change: multidecadal and beyond. World Scientific Com. Pte. Ltd., Singapore, pp 327–345

    Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Google Scholar 

  • Johnson NC (2013) How many ENSO flavors can we distinguish? J Clim 26:4816–4827

    Google Scholar 

  • Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570

    Google Scholar 

  • Ju J, Slingo J (1995) The Asian summer monsoon and ENSO. Q J R Meteorol Soc 121(525):1133–1168

    Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632. https://doi.org/10.1175/2008JCLI2309.1

    Article  Google Scholar 

  • Kinter JL III, Miyakoda K, Yang S (2002) Recent change in the connection from the Asian monsoon to ENSO. J Clim 15(10):1203–1215

    Google Scholar 

  • Kitoh A (2007) Variability of Indian monsoon-ENSO relationship in a 1000-year MRI-CGCM2. 2 simulation. Nat Haz 42(2):261–272

    Google Scholar 

  • Kripalani RH, Kulkarni A, Sabade SS, Khandekar ML (2003) Indian monsoon variability in a global warming scenario. Nat Haz 29(2):189–206

    Google Scholar 

  • Krishnamurthy V, Goswami BN (2000) Indian monsoon-ENSO relationship on interdecadal timescale. J Clim 13(3):579–595

    Google Scholar 

  • Kucharski F, Bracco A, Yoo J, Molteni F (1990s) Low-frequency variability of the Indian monsoon-ENSO relationship and the tropical Atlantic: the ‘weakening’ of the 1980s and 1990s. J Clim 20(16):4255–4266

    Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35:L04706. https://doi.org/10.1029/2007GL033037

    Article  Google Scholar 

  • Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Clim. 22:1499–1515

    Google Scholar 

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284(5423):2156–2159

    Google Scholar 

  • Lau WK, Kim K (2017) Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall. Asia-Pacific J Atmos Sci 53:181–194

    Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. https://doi.org/10.1029/2010GL044007.1

    Article  Google Scholar 

  • Lee JY, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42(1–2):101–119

    Google Scholar 

  • Li X, Ting M (2015) Recent and future changes in the Asian monsoon-ENSO relationship: natural or forced? Geophys Res Lett 42(9):3502–3512

    Google Scholar 

  • Maher N, Matei D, Milinski S, Marotzke J (2018) ENSO change in climate projections: forced response or internal variability? Geophys Res Lett 45:11390–11398

    Google Scholar 

  • Navarra A, Simoncini V (2010) A guide to empirical orthogonal functions for climate data analysis. Springer, New York. https://doi.org/10.1007/978-90-481-3702-2ISBN: 9789048137015

    Book  Google Scholar 

  • Neelin JD, Jin F-F (1993) Modes of interannual tropical ocean-atmosphere interaction—a unified view. Part II: analytical results in the weak-coupling limit. J Atmos Sci 50:3504–3522

    Google Scholar 

  • Pant GB, Parthasarathy B (1981) Some aspects of an association between the Southern Oscillation and Indian summer monsoon. Arch Meteorol Geophys Bioclimatol 29(3):245–252

    Google Scholar 

  • Peng P, Kumar A, Halpert MS, Barnston AG (2012) An Analysis of CPC’s operational 0.5-month lead seasonal outlooks. Wea Forecast 27:898–917

    Google Scholar 

  • Rajeevan M, Pai DS (2007) On the El Niño-Indian monsoon predictive relationships. Geophys Res Lett 34:L04704. https://doi.org/10.1029/2006GL028916

    Article  Google Scholar 

  • Ramesh N, Murtugudde R (2012) All flavours of El Niño have similar early subsurface origins. Nat Clim Change. https://doi.org/10.1038/NCLIMATE1600

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1983) The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon Wea Rev 111(3):517–528

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:4407. https://doi.org/10.1029/2002JD002670,D14

    Article  Google Scholar 

  • Sabeerali CT, Dandi AR, Dhakate A, Salunke K, Mahapatra S, Rao SA (2013) Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J Geophys Res Atmos 118(10):4401–4420

    Google Scholar 

  • Sabeerali CT, Rao SA, Dhakate AR, Salunke K, Goswami BN (2015) Why ensemble mean projection of south Asian monsoon rainfall by CMIP5 models is not reliable? Clim Dyn 45:161–174

    Google Scholar 

  • Sinha A, Berkelhammer M, Stott L, Mudelsee M, Cheng H, Biswas J (2011) The leading mode of Indian Summer Monsoon precipitation variability during the last millennium. Geophys Res Lett 38:L15703. https://doi.org/10.1029/2011GL047713

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Sooraj KP, Terray P, Mujumdar M (2015) Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim Dyn 45:233–252. https://doi.org/10.1007/s00382-014-2257-7

    Article  Google Scholar 

  • Sperber KR, Annamalai H, Kang I et al (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744

    Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth-century SST trends in the North Atlantic. J Clim 22(6):1469–1481

    Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys Res Lett 38:L17705. https://doi.org/10.1029/2011GL048712

    Article  Google Scholar 

  • Venegas SA (2001) Statistical methods for signal detection in climate. Danish Center for Earth System Science (DECSS) Report no. 2, pp. 1–96, www.atmos.colostate.edu/~davet/AT655/notes/VenegasNotes.pdf.

  • Venzke S, Allen MR, Sutton RT, Rowell DP (1999) The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. J Clim 12(8):2562–2584

    Google Scholar 

  • Wang B, Liu J, Kim H-J, Webster PJ, Yim S-Y, Xiang B (2013) Intensified Northern Hemisphere summer monsoon. Proc Natil Acad Sci 110(14):5347–5352. https://doi.org/10.1073/pnas.1219405110

    Article  Google Scholar 

  • Wang B, Xiang B, Li J, Webster PJ, Rajeevan MN, Liu J, Ha K-J (2015) Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nat Comm 6:7154. https://doi.org/10.1038/ncomms8154

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118(507):877–926

    Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai MU, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res Oceans 103(C7):14451–14510

    Google Scholar 

  • Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36:L12702. https://doi.org/10.1029/2009GL038710

    Article  Google Scholar 

  • Xavier PK, Marzin C, Goswami BN (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship. Q J R Meteorol Soc 133:749–764

    Google Scholar 

  • Yu JY, Kim ST (2010) Three evolution patterns of central-Pacific El Niño. Geophys Res Lett 37:L08706. https://doi.org/10.1029/2010GL04281

    Article  Google Scholar 

  • Yun KS, Timmermann A (2018) Decadal monsoon-ENSO relationships reexamined. Geophys Res Lett 45:2014–2021

    Google Scholar 

  • Zebiak SE (1993) Air-sea interaction in the equatorial atlantic region. J Clim 6:1567–1586

    Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Nin˜o–Southern oscillation. Mon Wea Rev 115:2262–2278

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to three anonymous reviewers for their useful suggestions and comments which have helped us clarify the text and improve the overall quality of the paper. PP thanks DST for providing research fellowship. SD thanks DST for providing financial assistance in the form of research projects. BNG thanks the Department of Science and technology, Government of India for the DST-SERB Distinguished Fellowship and Cotton University for hosting. The GPCP Precipitation data is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from website https://www.esrl.noaa.gov/psd/. The CMIP5 multi-model ensemble is available at https://cmip-pcmdi.llnl.gov/cmip5/. We acknowledge the World Climate Research Program's Working Group on Coupled Modelling which is responsible for CMIP5, and we thank the climate modelling groups (listed in Table 1 of this paper) for producing and making available their model output.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suneet Dwivedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P., Dwivedi, S., Goswami, B.N. et al. A new perspective on ENSO-Indian summer monsoon rainfall relationship in a warming environment. Clim Dyn 55, 3307–3326 (2020). https://doi.org/10.1007/s00382-020-05452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05452-7

Keywords

Navigation