Skip to main content

Advertisement

Log in

Surface pressure and elevation correction from observation and multiple reanalyses over the Tibetan Plateau

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Surface pressure reflects the deep structure of the overlying atmosphere, and is recognized as an indicator of climate change. In this study, observed surface pressure at 71 stations over the Tibetan Plateau (TP) during 1979–2013 is analyzed and compared with monthly means from multiple reanalyses (NCEP1, NCEP2, ERA-Interim, MERRA and JRA55). During the studied period, surface pressure from both observations and the reanalyses increases slowly up until the mid-2000s but shows a decrease afterwards, leading to a recent fall in pressure. However, the surface pressure over the TP in spring has increased, probably explained by the thermal condition such as diabatic heating change. Observations and the multiple reanalyses are positively correlated at most locations indicating that reanalyses reproduce the interannual variation and long-term trend of observed surface pressure fairly well. Despite high inter-annual correlation, trend magnitudes over 1979–2013 are varied, with observations showing decreased pressure at most stations, but reanalyses showing increases in many cases. Compared with observations however, surface pressures from all reanalyses are underestimated usually by about 3–6%. There are significant positive correlations between surface pressure bias and elevation bias, suggesting that overestimation of elevation partially explains the surface pressure bias. A topographical correction method using the hydrostatic equation is therefore conducted and more than 90% of the biases of the reanalyses can be eliminated. Overall, this study points to the importance of better analyzing the importance of topography in the western TP to enhance understanding of reanalysis uncertainties in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19(22):5816–5842. https://doi.org/10.1175/JCLI3937.1

    Article  Google Scholar 

  • Bao X, Zhang F (2013) Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J Clim 26(1):206–214

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303–309. https://doi.org/10.1038/nature04141

    Article  Google Scholar 

  • Cai D, You Q, Fraedrich K, Guan Y (2017) Spatiotemporal Temperature Variability over the Tibetan Plateau: altitudinal dependence associated with the global warming hiatus. J Clim 30:969–984. https://doi.org/10.1175/jcli-d-16-0343.1

    Article  Google Scholar 

  • Chen TC, Chen JM, Schubert S, Takacs LL (1997) Seasonal variation of global surface pressure and water vapor. Tellus A 49:613–621

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190

    Article  Google Scholar 

  • Cullather R, Lynch A (2003) The annual cycle and interannual variability of atmospheric pressure in the vicinity of the North Pole. Int J Climatol 23(10):1161–1183

    Article  Google Scholar 

  • Cuo L, Zhang Y, Wang Q, Zhang L, Zhou B, Hao Z, Su F (2013) Climate change on the Northern Tibetan Plateau during 1957–2009: spatial patterns and possible mechanisms. J Clim 26(1):85–109. https://doi.org/10.1175/jcli-d-11-00738.1

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Duan AM, Wu GX (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim Dyn 24(7–8):793–807. https://doi.org/10.1007/s00382-004-0488-8

    Article  Google Scholar 

  • Duan AM, Wu G, Liu Y, Ma Y, Zhao P (2012) Weather and climate effects of the Tibetan Plateau. Adv Atmos Sci 29(5):978–992. https://doi.org/10.1007/s00376-012-1220-y

    Article  Google Scholar 

  • Fu R, Hu Y, Wright JS, Jiang JH, Dickinson RE, Chen M, Filipiak M, Read WG, Waters JW, Wu DL (2006) Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc Natl Acad Sci 103(15):5664–5669

    Article  Google Scholar 

  • Gelaro R et al (2017) The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J Clim 30(14):5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

    Article  Google Scholar 

  • Gillett NP, Zwiers FW, Weaver AJ, Stott P (2003) Detection of human influence on sea-level pressure. Nature 422:292–294

    Article  Google Scholar 

  • Hahn DG, Shukla J (1976) An apparent relationship between eurasian snow cover and indian monsoon rainfall. J Atmos Sci 33(12):2461–2462. https://doi.org/10.1175/1520-0469(1976)033%3c2461:AARBES%3e2.0.CO;2

    Article  Google Scholar 

  • Han W et al (2010) Patterns of Indian Ocean sea-level change in a warming climate. Nat Geosci 3(8):546–550

    Article  Google Scholar 

  • Hersbach H, de Rosnay P, Bell B, Schepers D, Simmons A, Soci C, Abdalla S, Alonso-Balmaseda M, Balsamo GB (2018) Operational global reanalysis: progress, future directions and synergies with NWP, ERA Report Series 27. ECMWF, Shinfield Park

    Google Scholar 

  • Hines KM, Bromwich DH, Marshall GJ (2000) Artificial surface pressure trends in the NCEP–NCAR reanalysis over the Southern Ocean and Antarctica. J Clim 13(22):3940–3952

    Article  Google Scholar 

  • Ingleby B (2015) Global assimilation of air temperature, humidity, wind and pressure from surface stations. Q J R Meteorol Soc 141(687):504–517. https://doi.org/10.1002/qj.2372

    Article  Google Scholar 

  • Jacques AA, Horel JD, Crosman ET, Vernon FL (2015) Central and Eastern US surface pressure variations derived from the US array network. Mon Weather Rev 143(4):1472–1493. https://doi.org/10.1175/mwr-d-14-00274.1

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1643. https://doi.org/10.1175/bams-83-11-1631

    Article  Google Scholar 

  • Kang SC, Xu YW, You QL, Flugel WA, Pepin N, Yao TD (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1):015101. https://doi.org/10.1088/1748-9326/5/1/015101

    Article  Google Scholar 

  • Kistler R et al (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–267

    Article  Google Scholar 

  • Kobayashi S et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48

    Article  Google Scholar 

  • Koppel LL, Bosart LF, Keyser D (2000) A 25-yr climatology of large-amplitude hourly surface pressure changes over the conterminous United States. Mon Weather Rev 128(1):51–68

    Article  Google Scholar 

  • Liu X, Cheng Z, Yan L, Yin Z-Y (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global Planet Change 68(3):164–174

    Article  Google Scholar 

  • Ma LJ, Zhang TJ, Li QX, Frauenfeld OW, Qin DH (2008) Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China. J Geophys Res Atmos 113:D15115. https://doi.org/10.1029/2007jd009549

    Article  Google Scholar 

  • Ma LJ, Zhang T, Frauenfeld OW, Ye BS, Yang DQ, Qin DH (2009) Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 Reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China. J Geophys Res Atmos 114:D09105

    Google Scholar 

  • Mass CF, Madaus LE (2014) Surface pressure observations from smartphones: a potential revolution for high-resolution weather prediction? Bull Am Meteorol Soc 95(9):1343–1349

    Article  Google Scholar 

  • Moore G (2012) Surface pressure record of Tibetan Plateau warming since the 1870s. Q J R Meteorol Soc 138(669):1999–2008

    Article  Google Scholar 

  • Pepin NC, Daly C, Lundquist J (2011) The influence of surface versus free-air decoupling on temperature trend patterns in the western United States. J Geophys Res Atmos 116:D10109. https://doi.org/10.1029/2010jd014769

    Article  Google Scholar 

  • Rangwala I, Miller J, Russell G, Xu M (2010) Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Clim Dyn 34(6):859–872

    Article  Google Scholar 

  • Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648. https://doi.org/10.1175/jcli-d-11-00015.1

    Article  Google Scholar 

  • Saha K, van den Dool H, Saha S (1994) On the annual cycle in surface pressure on the Tibetan Plateau compared to its surroundings. J Clim 7(12):2014–2019

    Article  Google Scholar 

  • Sen PK (1968) Estimates of regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Simmons AJ, Jones PD, Bechtold VD, Beljaars ACM, Kallberg PW, Saarinen S, Uppala SM, Viterbo P, Wedi N (2004) Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J Geophys Res Atmos 109:D24115. https://doi.org/10.1029/2004jd005306

    Article  Google Scholar 

  • Song CQ, Ke LH, Richards KS, Gui YZ (2016) Homogenization of surface temperature data in High Mountain Asia through comparison of reanalysis data and station observations. Int J Climatol 36:1088–1101

    Article  Google Scholar 

  • Toumi R, Hartell N, Bignell K (1999) Mountain station pressure as an indicator of climate change. Geophys Res Lett 26(12):1751–1754

    Article  Google Scholar 

  • Trenberth KE (1981) Seasonal variations in global sea level pressure and the total mass of the atmosphere. J Geophys Res Atmos 86:5236–5246

    Article  Google Scholar 

  • Trenberth KE, Christy JR, Olson JG (1987) Global atmospheric mass, surface pressure, and water vapor variations. J Geophys Res Atmos 92:14815–14826

    Article  Google Scholar 

  • van den Dool HM, Saha S (1993) Seasonal redistribution and conservation of atmospheric mass in a general circulation model. J Clim 6(1):22–30. https://doi.org/10.1175/1520-0442(1993)006%3c0022:SRACOA%3e2.0.CO;2

    Article  Google Scholar 

  • Van Wijngaarden W (2005) Examination of trends in hourly surface pressure in Canada during 1953–2003. Int J Climatol 25(15):2041–2049

    Article  Google Scholar 

  • Wang A, Zeng X (2012) Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res Atmos (1984–2012) 117(D5):D05102

    Google Scholar 

  • Wheatley D, Stensrud D (2010) The impact of assimilating surface pressure observations on severe weather events in a WRF mesoscale ensemble system. Mon Weather Rev 138:1673–1694

    Article  Google Scholar 

  • Wu TW, Qian ZA (2003) The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: an observational investigation. J Clim 16(12):2038–2051

    Article  Google Scholar 

  • Wu GX, Duan AM, Liu YM, Mao J, Ren R, Bao Q, He B, Liu B, Hu W (2015) Tibetan Plateau climate dynamics: recent research progress and outlook. Natl Sci Rev 2:100–116

    Article  Google Scholar 

  • Xie AH, Allison I, Xiao CD, Wang SM, Ren JW, Qin DH (2014) Assessment of surface pressure between Zhongshan and Dome a in East Antarctica from different meteorological reanalyses. Arct Antarct Alp Res 46:669–681

    Article  Google Scholar 

  • Yanai MH, Li C (1994) Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon Weather Rev 122:305–323

    Article  Google Scholar 

  • Yanai MH, Li C, Song Z (1992) Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteorol Soc Jpn 70:319–351

    Article  Google Scholar 

  • Yang K, Ye BS, Zhou DG, Wu BY, Foken T, Qin J, Zhou ZY (2011) Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim Change 109(3–4):517–534. https://doi.org/10.1007/s10584-011-0099-4

    Article  Google Scholar 

  • Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Global Planet Change 112:79–91

    Article  Google Scholar 

  • You QL, Kang SC, Aguilar E, Yan YP (2008a) Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J Geophys Res Atmos 113:D07101

    Article  Google Scholar 

  • You QL, Kang SC, Pepin N, Yan YP (2008b) Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961-2005. Geophys Res Lett 35:L04704. https://doi.org/10.1029/2007gl032669

    Article  Google Scholar 

  • You QL, Fraedrich K, Min J, Kang S, Zhu X, Ren G, Meng X (2013a) Can temperature extremes in China be calculated from reanalysis? Global Planet Change 111:268–279

    Article  Google Scholar 

  • You QL, Fraedrich K, Ren G, Pepin N, Kang S (2013b) Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. Int J Climatol 33(6):1337–1347

    Article  Google Scholar 

  • You QL, Sanchez-Lorenzo A, Wild M, Folini D, Fraedrich K, Ren G, Kang S (2013c) Decadal variation of surface solar radiation in the Tibetan Plateau from observations, reanalysis and model simulations. Clim Dyn 40(7–8):2073–2086

    Article  Google Scholar 

  • You QL, Min J, Zhang W, Pepin N, Kang S (2015a) Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Clim Dyn 45(3):791–806. https://doi.org/10.1007/s00382-014-2310-6

    Article  Google Scholar 

  • You QL, Min JZ, Lin HB, Kang S, Nick P (2015b) Observed climatology and trend in relative humidity in the eastern and central Tibetan Plateau. J Geophys Res Atmos 120:3610–3621

    Article  Google Scholar 

  • You QL, Jiang ZH, Moore G, Bao YT, Kong L, Kang SC (2017) Revisiting the relationship between observed warming and surface pressure in the Tibetan Plateau. J Clim 30:1721–1737

    Article  Google Scholar 

  • Zhao T, Guo W, Fu C (2008) Calibrating and evaluating reanalysis surface temperature error by topographic correction. J Clim 21(6):1440–1446. https://doi.org/10.1175/2007jcli1463.1

    Article  Google Scholar 

  • Zishka KM, Smith PJ (1980) The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77. Mon Weather Rev 108:387–401

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by National Key R&D Program of China (2016YFA0601702) and National Natural Science Foundation of China (41771069). NCEP Reanalysis data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa.gov/psd/. We are very grateful to the reviewers for their constructive comments and thoughtful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglong You.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Q., Bao, Y., Jiang, Z. et al. Surface pressure and elevation correction from observation and multiple reanalyses over the Tibetan Plateau. Clim Dyn 53, 5893–5908 (2019). https://doi.org/10.1007/s00382-019-04905-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04905-y

Keywords

Navigation