Skip to main content

Advertisement

Log in

Modeling the late Pliocene global monsoon response to individual boundary conditions

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The late Pliocene is a pre-Quaternary warming period compared to the preindustrial period. Here, based on the updated PRISM4 (Pliocene Research, Interpretation and Synoptic Mapping version 4) boundary conditions from the Pliocene Model Intercomparison Project phase 2 (PlioMIP2), seven experiments are conducted to simulate the global monsoon in the late Pliocene interglacial period and further investigate the impacts from changes in the individual boundary conditions by using the Community Earth System Model (CESM 1.0.4). The simulated late Pliocene interglacial climate is generally warmer and wetter than the preindustrial period climate, with an expanded monsoon domain, particularly in North Africa, Asia and Australia. The differences in topography, vegetation and lakes outside of Greenland and Antarctica account for the greatest contribution to monsoon changes. Moreover, orbital parameter variations further significantly affect monsoon domains and lead to significant fluctuations in monsoon precipitation and winds on the orbital scale, and the changed magnitude is even larger than that between the late Pliocene and preindustrial period when orbital forcing is not considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the PlioMIP2/PRISM4 boundary condition data are available from the USGS PlioMIP2 web page: http://geology.er.usgs.gov/egpsc/prism/7_pliomip2.html.

References

  • An ZS, Wu GX, Li JP, Sun YB, Liu YM, Zhou WJ, Cai YJ, Duan AM, Li L, Mao JY, Cheng H, Shi ZG, Tan LC, Yan H, Ao H, Chang H, Feng J (2015) Global monsoon dynamics and climate change. Annu Rev Earth Planet Sci 43:29–77

    Article  Google Scholar 

  • Bonnefille R (2010) Cenozoic vegetation, climate changes and hominid evolution in tropical Africa. Global Planet Change 72:390–411

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber L, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the mid-holocene and last glacial maximum—part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Clim Past 3:279–296

    Article  Google Scholar 

  • Brierley CM (2015) Interannual climate variability seen in the Pliocene model intercomparison project. Clim Past 11:605–618

    Article  Google Scholar 

  • Chandan D, Peltier WR (2018) On the mechanisms of warming the mid-Pliocene and the inference of a hierarchy of climate sensitivities with relevance to the understanding of climate futures. Clim Past 14:825–856

    Article  Google Scholar 

  • Chandler M, Rind D, Thompson R (1994) Joint investigations of the middle Pliocene climate II: GISS GCM northern hemisphere results. Global Planet Change 9:197–219

    Article  Google Scholar 

  • Cheng H, Sinha A, Wang XF, Cruz FW, Edwards RL (2012) The global paleomonsoon as seen through speleothem records from Asia and the Americas. Clim Dyn 39:1045–1062

    Article  Google Scholar 

  • Clift PD, Hodges KV, Heslop D, Hannigan R, Van Long H, Calves G (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat Geosci 1:875–880

    Article  Google Scholar 

  • Contoux C, Jost A, Ramstein G, Sepulchre P, Krinner G, Schuster M (2013) Megalake Chad impact on climate and vegetation during the late Pliocene and the mid-Holocene. Clim Past 9:1417–1430

    Article  Google Scholar 

  • Dai AG, Li HM, Sun Y, Hong LC, Ho L, Chou C, Zhou TJ (2013) The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons. J Geophys Res 118:7024–7045

    Article  Google Scholar 

  • DeMenocal PB (2004) African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet Sci Lett 220:3–24

    Article  Google Scholar 

  • Ding ZL, Yang SL, Sun JM, Liu TS (2001) Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma. Earth Planet Sci Lett 185:99–109

    Article  Google Scholar 

  • Dolan AM, Hunter SJ, Hill DJ, Haywood AM, Koenig SJ, Otto-Bliesner BL, Abe-Ouchi A, Bragg F, Chan WL, Chandler MA, Contoux C, Jost A, Kamae Y, Lohmann G, Lunt DJ, Ramstein G, Rosenbloom NA, Sohl L, Stepanek C, Ueda H, Yan Q, Zhang Z (2015) Using results from the PlioMIP ensemble to investigate the Greenland ice sheet during the mid-Pliocene warm period. Clim Past 11:403–424

    Article  Google Scholar 

  • Dowsett H, Thompson R, Barron J, Cronin T, Fleming F, Ishman S, Poore R, Willard D, Holtz T (1994) Joint investigations of the middle Pliocene climate I: PRISM paleoenvironmental reconstructions. Global Planet Change 9:169–195

    Article  Google Scholar 

  • Dowsett H, Barron J, Poore R (1996) Middle Pliocene sea surface temperatures: a global reconstruction. Mar Micropaleontol 27:13–25

    Article  Google Scholar 

  • Dowsett H, Dolan A, Rowley D, Moucha R, Forte AM, Mitrovica JX, Pound M, Salzmann U, Robinson M, Chandler M, Foley K, Haywood A (2016) The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Clim Past 12:1519–1538

    Article  Google Scholar 

  • Fu CF, An ZS, Qiang XK, Bloemendal J, Song YG, Chang H (2013) Magnetostratigraphic determination of the age of ancient Lake Qinghai, and record of the East Asian monsoon since 4.63 Ma. Geology 41:875–878

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z-L, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991

    Article  Google Scholar 

  • Haywood AM, Valdes PJ (2004) Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth Planet Sci Lett 218:363–377

    Article  Google Scholar 

  • Haywood AM, Valdes PJ (2006) Vegetation cover in a warmer world simulated using a dynamic global vegetation model for the mid-Pliocene. Palaeogeogr Palaeoclimatol Palaeoecol 237:412–427

    Article  Google Scholar 

  • Haywood AM, Hill DJ, Dolan AM, Otto-Bliesner BL, Bragg F, Chan W-L, Chandler MA, Contoux C, Dowsett HJ, Jost A, Kamae Y, Lohmann G, Lunt DJ, Abe-Ouchi A, Pickering SJ, Ramstein G, Rosenbloom NA, Salzmann U, Sohl L, Stepanek C, Ueda H, Yan Q, Zhang Z (2013) Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim Past 9:191–209

    Article  Google Scholar 

  • Haywood AM, Dowsett HJ, Dolan AM, Rowley D, Abe-Ouchi A, Otto-Bliesner B, Chandler MA, Hunter SJ, Lunt DJ, Pound M, Salzmann U (2016) The Pliocene model intercomparison project (PlioMIP) phase 2: scientific objectives and experimental design. Clim Past 12:663–675

    Article  Google Scholar 

  • Hill DJ, Haywood AM, Lunt DJ, Hunter SJ, Bragg FJ, Contoux C, Stepanek C, Sohl L, Rosenbloom NA, Chan W-L, Kamae Y, Zhang Z, Abe-Ouchi A, Chandler MA, Jost A, Lohmann G, Otto-Bliesner BL, Ramstein G, Ueda H (2014) Evaluating the dominant components of warming in Pliocene climate simulations. Clim Past 10:79–90

    Article  Google Scholar 

  • Jiang HC, Ding ZL (2008) A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China. Palaeogeogr Palaeoclimatol Palaeoecol 265:30–38

    Article  Google Scholar 

  • Jiang D, Wang HJ, Ding ZL, Lang XM, Drange H (2005) Modeling the middle Pliocene climate with a global atmospheric general circulation model. J Geophys Res. https://doi.org/10.1029/2004jd005639

    Article  Google Scholar 

  • Jiang D, Tian ZP, Lang XM (2015) Mid-Holocene global monsoon area and precipitation from PMIP simulations. Clim Dyn 44:2493–2512

    Article  Google Scholar 

  • Kamae Y, Yoshida K, Ueda H (2016) Sensitivity of Pliocene climate simulations in MRI-CGCM2.3 to respective boundary conditions. Clim Past 12:1619–1634

    Article  Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285

    Article  Google Scholar 

  • Lebatard AE, Bourles DL, Braucher R, Arnold M, Duringer P, Jolivet M, Moussa A, Deschamps P, Roquin C, Carcaillet J, Schuster M, Lihoreau F, Likius A, Mackaye HT, Vignaud P, Brunet M (2010) Application of the authigenic 10Be/9Be dating method to continental sediments: reconstruction of the Mio-Pleistocene sedimentary sequence in the early hominid fossiliferous areas of the northern Chad Basin. Earth Planet Sci Lett 297:57–70

    Article  Google Scholar 

  • Lee JY, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119

    Article  Google Scholar 

  • Levin NE, Brown FH, Behrensmeyer AK, Bobe R, Cerling TE (2011) Paleosol carbonates from the Omo Group: isotopic records of local and regional environmental change in East Africa. Palaeogeogr Palaeoclimatol Palaeoecol 307:75–89

    Article  Google Scholar 

  • Li X, Jiang D, Tian Z, Yang Y (2018) Mid-Pliocene global land monsoon from PlioMIP1 simulations. Palaeogeogr Palaeoclimatol Palaeoecol 512:56–70

    Article  Google Scholar 

  • Liu J, Wang B, Ding QH, Kuang XY, Soon WL, Zorita E (2009) Centennial variations of the global monsoon precipitation in the last millennium: results from ECHO-G model. J Clim 22:2356–2371

    Article  Google Scholar 

  • Lu F, An Z, Chang H, Dodson J, Qiang X, Yan H, Dong J, Song Y, Fu C, Li X (2017) Climate change and tectonic activity during the early Pliocene warm period from the ostracod record at Lake Qinghai, northeastern Tibetan Plateau. J Asian Earth Sci 138:466–476

    Article  Google Scholar 

  • Martin HA (2006) Cenozoic climatic change and the development of the arid vegetation in Australia. J Arid Environ 66:533–563

    Article  Google Scholar 

  • McLaren S, Wallace MW (2010) Plio-Pleistocene climate change and the onset of aridity in southeastern Australia. Global Planet Change 71:55–72

    Article  Google Scholar 

  • Miao YF, Fang XM, Wu FL, Cai MT, Song CH, Meng QQ, Xu L (2013) Late Cenozoic continuous aridifcation in the western Qaidam Basin: evidence from sporopollen records. Clim Past 9:1863–1877

    Article  Google Scholar 

  • Nie J, Stevens T, Song Y, King JW, Zhang R, Ji S, Gong L, Cares D (2014) Pacific freshening drives Pliocene cooling and Asian monsoon intensification. Sci Rep UK 4:5474

    Article  Google Scholar 

  • Passey BH, Ayliffe LK, Kaakinen A, Zhang ZQ, Eronen JT, Zhu YM, Zhou LP, Cerling TE, Fortelius M (2009) Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China. Earth Planet Sci Lett 277:443–452

    Article  Google Scholar 

  • Peng W, Nie J, Wang Z, Qiang X, Garzanti E, Pfaff K, Song Y, Stevens T (2018) A major change in precipitation gradient on the Chinese Loess Plateau at the Pliocene-Quaternary boundary. J Asian Earth Sci 155:134–138

    Article  Google Scholar 

  • Pound MJ, Tindall J, Pickering SJ, Haywood AM, Dowsett HJ, Salzmann U (2014) Late Pliocene lakes and soils: a global data set for the analysis of climate feedbacks in a warmer world. Clim Past 10:167–180

    Article  Google Scholar 

  • Prescott CL, Haywood AM, Dolan AM, Hunter SJ, Pope JO, Pickering SJ (2014) Assessing orbitally-forced interglacial climate variability during the mid-Pliocene warm period. Earth Planet Sci Lett 400:261–271

    Article  Google Scholar 

  • Prescott CL, Haywood AM, Dolan AM, Hunter SJ, Tindall JC (2018) Indian monsoon variability in response to orbital forcing during the late Pliocene. Global Planet Change 173:33–46

    Article  Google Scholar 

  • Rao W, Chen J, Yang J, Ji J, Zhang G, Chen J (2008) Strontium isotopic andelemental characteristics of calcites in the eolian dust profle of the Chinese Loess Plateau during the past 7 Ma. Geochem J 42:493–506

    Article  Google Scholar 

  • Rosenbloom NA, Otto-Bliesner BL, Brady EC, Lawrence PJ (2013) Simulating the mid-Pliocene warm period with the CCSM4 model. Geosci Model Dev 6:549–561

    Article  Google Scholar 

  • Salzmann U, Haywood AM, Lunt DJ, Valdes PJ, Hill DJ (2008) A new global biome reconstruction and data-model comparison for the middle Pliocene. Glob Ecol Biogeogr 17:432–447

    Article  Google Scholar 

  • Singh S, Parkash B, Awasthi AK, Singh T (2012) Palaeoprecipitation record using O-isotope studies of the Himalayan Foreland Basin sediments, NW India. Palaeogeogr Palaeoclimatol Palaeoecol 331:39–49

    Article  Google Scholar 

  • Sloan LC, Crowley TJ, Pollard D (1996) Modeling of middle Pliocene climate with the NCAR GENESIS general circulation model. Mar Micropaleontol 27:51–61

    Article  Google Scholar 

  • Sun DH, Su RX, Bloemendal J, Lu HY (2008) Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: implications for variations in the East Asian winter monsoon and westerly atmospheric circulation. Palaeogeogr Palaeoclimatol Palaeoecol 264:39–53

    Article  Google Scholar 

  • Sun Y, Zhou TJ, Ramstein G, Contoux C, Zhang ZS (2016) Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. Clim Dyn 46:1437–1457

    Article  Google Scholar 

  • Sun Y, Ramstein G, Li LZX, Contoux C, Tan N, Zhou T (2018) Quantifying East Asian summer monsoon dynamics in the ECP4.5 scenario with reference to the mid-Piacenzian warm period. Geophys Res Lett 45:12523–12533

    Article  Google Scholar 

  • Tan N, Ramstein G, Dumas C, Contoux C, Ladant JB, Sepulchre P, Zhang ZS, De Schepper S (2017) Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate. Earth Planet Sci Lett 472:266–276

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP, Caron JM (2000) The global monsoon as seen through the divergent atmospheric circulation. J Clim 13:3969–3993

    Article  Google Scholar 

  • Wan SM, Li AC, Clift PD, Stuut JBW (2007) Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeogr Palaeoclimatol Palaeoecol 254:561–582

    Article  Google Scholar 

  • Wang B, Liu J, Kim HJ, Webster PJ, Yim SY (2012) Recent change of the global monsoon precipitation (1979–2008). Clim Dyn 39:1123–1135

    Article  Google Scholar 

  • Wang PX, Wang B, Cheng H, Fasullo J, Guo ZT, Kiefer T, Liu ZY (2017) The global monsoon across time scales: mechanisms and outstanding issues. Earth Sci Rev 174:84–121

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res-Oceans 103:14451–14510

    Article  Google Scholar 

  • Xiong SF, Ding ZL, Yang SL (2001) Abrupt shifts in the late Cenozoic environment of north-western China recorded in loess-palaeosol-red clay sequences. Terra Nova 13:376–381

    Article  Google Scholar 

  • Yan Q, Zhang Z, Zhang R (2018) Investigating sensitivity of East Asian monsoon to orbital forcing during the Late Pliocene warm period. J Geophys Res 123:7161–7178

    Google Scholar 

  • Yan Q, Wei T, Zhang Z (2019) Reexamination of the Late Pliocene climate over China using a 25 km resolution general circulation model. J Clim 32:897–916

    Article  Google Scholar 

  • Yang YB, Fang XM, Galy A, Appel E, Li MH (2013) Quaternary paleolake nutrient evolution and climatic change in the western Qaidam Basin deduced from phosphorus geochemistry record of deep drilling core SG-1. Q Int 313:156–167

    Article  Google Scholar 

  • Yang SL, Ding ZL, Feng SH, Jiang WY, Huang XF, Guo LC (2018) A strengthened East Asian summer monsoon during Pliocene warmth: evidence from ‘red clay’ sediments at Pianguan, northern China. J Asian Earth Sci 155:124–133

    Article  Google Scholar 

  • Zan JB, Fang XM, Li XJ, Zhang WL, Yan MD, Shen MM (2018) Late Pliocene monsoonal rainfall gradients in western China recorded by the eolian deposits from the Linxia Basin, NE Tibetan Plateau. J Geophys Res 123:8047–8061

    Google Scholar 

  • Zhang R, Jiang D (2014) Impact of vegetation feedback on the mid-Pliocene warm climate. Adv Atmos Sci 31:1407–1416

    Article  Google Scholar 

  • Zhang R, Zhang Q (2017) Non-uniform spatial difference in the South Asian summer monsoon during the mid-Piacenzian. Atmos Ocean Sci Lett 10:269–275

    Article  Google Scholar 

  • Zhang R, Yan Q, Zhang Z, Jiang D, Otto-Bliesner BL, Haywood AM, Hill DJ, Dolan AM, Stepanek C, Lohmann G, Contoux C, Bragg F, Chan W-L, Chandler MA, Jost A, Kamae Y, Abe-Ouchi A, Ramstein G, Rosenbloom NA, Sohl L, Ueda H (2013a) Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP. Clim Past 9:2085–2099

    Article  Google Scholar 

  • Zhang ZS, Nisancioglu KH, Chandler MA, Haywood AM, Otto-Bliesner BL, Ramstein G, Stepanek C, Abe-Ouchi A, Chan W-L, Bragg FJ, Contoux C, Dolan AM, Hill DJ, Jost A, Kamae Y, Lohmann G, Lunt DJ, Rosenbloom NA, Sohl LE, Ueda H (2013b) Mid-Pliocene Atlantic meridional overturning circulation not unlike modern. Clim Past 9:1495–1504

    Article  Google Scholar 

  • Zhang R, Jiang D, Zhang Z (2015) Causes of mid-Pliocene strengthened summer and weakened winter monsoons over East Asia. Adv Atmos Sci 32:1016–1026

    Article  Google Scholar 

  • Zhang R, Zhang Z, Jiang D, Yan Q, Zhou X, Cheng ZG (2016) Strengthened African summer monsoon in the Mid-Piacenzian. Adv Atmos Sci 33:1061–1070

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (41888101, 41775088 and 41472160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Jiang, D., Zhang, Z. et al. Modeling the late Pliocene global monsoon response to individual boundary conditions. Clim Dyn 53, 4871–4886 (2019). https://doi.org/10.1007/s00382-019-04834-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04834-w

Keywords

Navigation